
Hilario Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362879/publications.pdf Version: 2024-02-01

Ηπνρίο Μιρλι

#	Article	IF	CITATIONS
1	Honeycomb monolithic design to enhance the performance of Ni-based catalysts for dry reforming of methane. Catalysis Today, 2022, 383, 226-235.	4.4	8
2	Clay honeycomb monoliths for the simultaneous retention of lead and cadmium in water. Environmental Technology and Innovation, 2022, 27, 102765.	6.1	3
3	Role of the Wild Carob as Biosorbent and as Precursor of a New High-Surface-Area Activated Carbon for the Adsorption of Methylene Blue. Arabian Journal for Science and Engineering, 2021, 46, 325-341.	3.0	31
4	Optimized preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for acetone total combustion. Microporous and Mesoporous Materials, 2021, 310, 110651.	4.4	9
5	3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: the Ni-based catalysts in methane dry reforming showcase. Catalysis Communications, 2021, 148, 106181.	3.3	28
6	Copper-iron mixed oxide supported onto cordierite honeycomb as a heterogeneous catalyst in the Kharasch-Sosnovsky oxidation of cyclohexene. Catalysis Today, 2021, , .	4.4	3
7	Use of Au/N-TiO2/SiO2 photocatalysts in building materials with NO depolluting activity. Journal of Cleaner Production, 2020, 243, 118633.	9.3	27
8	In situ generation of Mn1â^'xCex system on cordierite monolithic supports for combustion of n-hexane. Effects on activity and stability. Fuel, 2020, 262, 116564.	6.4	18
9	Nickel recycling through bioleaching of a Ni/Al2O3 commercial catalyst. Hydrometallurgy, 2020, 195, 105350.	4.3	8
10	Ultrathin Washcoat and Very Low Loading Monolithic Catalyst with Outstanding Activity and Stability in Dry Reforming of Methane. Nanomaterials, 2020, 10, 445.	4.1	8
11	Honeycomb filters as an alternative to powders in the use of clays to remove cadmium from water. Chemosphere, 2020, 259, 127526.	8.2	10
12	Adding value to natural clays as low-cost adsorbents of methylene blue in polluted water through honeycomb monoliths manufacture. SN Applied Sciences, 2019, 1, 1.	2.9	18
13	One-pot synthesis of Au/N-TiO2 photocatalysts for environmental applications: Enhancement of dyes and NOx photodegradation. Powder Technology, 2019, 355, 793-807.	4.2	45
14	Au-TiO2/SiO2 photocatalysts for building materials: Self-cleaning and de-polluting performance. Building and Environment, 2019, 164, 106347.	6.9	31
15	Au-TiO2/SiO2 photocatalysts with NOx depolluting activity: Influence of gold particle size and loading. Chemical Engineering Journal, 2019, 368, 417-427.	12.7	48
16	Lead removal from aqueous solution by means of integral natural clays honeycomb monoliths. Journal of Hazardous Materials, 2019, 365, 519-530.	12.4	41
17	Low temperature prepared copper-iron mixed oxides for the selective CO oxidation in the presence of hydrogen. Applied Catalysis A: General, 2018, 552, 58-69.	4.3	23
18	Use of pillared clays in the preparation of washcoated clay honeycomb monoliths as support of manganese catalysts for the total oxidation of VOCs. Catalysis Today, 2017, 296, 84-94.	4.4	24

HILARIO VIDAL

#	Article	IF	CITATIONS
19	Integration of Adsorption and Photocatalytic Degradation of Methylene Blue Using \$\$hbox {TiO}_{2}\$\$ TiO 2 Supported on Granular Activated Carbon. Arabian Journal for Science and Engineering, 2017, 42, 1475-1486.	3.0	24
20	Insights on the combustion mechanism of ethanol and n-hexane in honeycomb monolithic type catalysts: Influence of the amount and nature of Mn-Cu mixed oxide. Fuel, 2017, 208, 637-646.	6.4	39
21	Clay honeycomb monoliths as low cost CO2 adsorbents. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 415-423.	5.3	13
22	Carbon integral honeycomb monoliths as support of copper catalysts in the Kharasch–Sosnovsky oxidation of cyclohexene. Chemical Engineering Journal, 2016, 290, 174-184.	12.7	7
23	Acyloxylation of 1,4-Dioxanes and 1,4-Dithianes Catalyzed by a Copper–Iron Mixed Oxide. Journal of Organic Chemistry, 2015, 80, 6814-6821.	3.2	13
24	Comparative study of the catalytic performance and final surface structure of Co3O4/La-CeO2 washcoated ceramic and metallic honeycomb monoliths. Catalysis Today, 2015, 253, 190-198.	4.4	26
25	Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction. Catalysis Today, 2015, 249, 86-93.	4.4	20
26	A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation. Applied Catalysis B: Environmental, 2014, 144, 425-434.	20.2	67
27	Experimental evidences of the relationship between reducibility and micro- and nanostructure in commercial high surface area ceria. Applied Catalysis A: General, 2014, 479, 35-44.	4.3	13
28	TAP study of toluene total oxidation over a Co ₃ O ₄ /La-CeO ₂ catalyst with an application as a washcoat of cordierite honeycomb monoliths. Physical Chemistry Chemical Physics, 2014, 16, 11447-11455.	2.8	40
29	Clay honeycomb monoliths for water purification: Modulating methylene blue adsorption through controlled activation via natural coal templating. Applied Surface Science, 2013, 277, 242-248.	6.1	14
30	Monolithic honeycomb design applied to carbon materials for catalytic methane decomposition. Applied Catalysis A: General, 2013, 458, 21-27.	4.3	32
31	Combined (S)TEM-FIB Insight into the Influence of the Preparation Method on the Final Surface Structure of a Co ₃ O ₄ /La-Modified-CeO ₂ Washcoated Monolithic Catalyst. Journal of Physical Chemistry C, 2013, 117, 13028-13036.	3.1	13
32	DoE (Design of Experiments) Assisted Allylic Hydroxylation of Enones Catalysed by a Copper–Aluminium Mixed Oxide. European Journal of Organic Chemistry, 2013, 2013, 8307-8314.	2.4	47
33	Simultaneous water gas shift and methanation reactions on Ru/Ce0.8Tb0.2O2â^'x based catalysts. Catalysis Today, 2012, 180, 42-50.	4.4	13
34	Non-cordierite clay-based structured materials for environmental applications. Journal of Hazardous Materials, 2010, 181, 9-18.	12.4	42
35	Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity. Applied Surface Science, 2010, 256, 7111-7117.	6.1	13
36	Effectiveness of acid-treated agricultural stones used in biopurification systems to avoid pesticide contamination of water resources caused by direct losses: Part I. Equilibrium experiments and kinetics. Bioresource Technology, 2010, 101, 5084-5091.	9.6	26

HILARIO VIDAL

#	Article	IF	CITATIONS
37	Easy route to activate clay honeycomb monoliths for environmental applications. Applied Clay Science, 2010, 47, 392-399.	5.2	24
38	Easy extrusion of honeycomb-shaped monoliths using Moroccan natural clays and investigation of their dynamic adsorptive behavior towards VOCs. Journal of Hazardous Materials, 2009, 170, 87-95.	12.4	23
39	Original carbon-based honeycomb monoliths as support of Cu or Mn catalysts for low-temperature SCR of NO: Effects of preparation variables. Applied Catalysis A: General, 2008, 342, 150-158.	4.3	49
40	Physicochemical characterization and adsorptive properties of some Moroccan clay minerals extruded as lab-scale monoliths. Applied Clay Science, 2007, 36, 287-296.	5.2	22
41	Originally prepared carbon-based honeycomb monoliths with potential application asÂVOCs adsorbents. Comptes Rendus Chimie, 2006, 9, 1215-1220.	0.5	27
42	Extension of preparation methods employed with ceramic materials to carbon honeycomb monoliths. Carbon, 2004, 42, 3251-3254.	10.3	90
43	Chemical Reactivity of Binary Rare Earth Oxides. , 2004, , 9-55.		3
44	Study of the Structural Modifications Induced by Reducing Treatments on a Pd/Ce0.8Tb0.2O2-x/La2O3â~'Al2O3Catalyst by Means of X-ray Diffraction and Electron Microscopy Techniques. Chemistry of Materials, 2002, 14, 1405-1410.	6.7	17
45	Investigation by Means of H2 Adsorption, Diffraction, and Electron Microscopy Techniques of a Cerium/Terbium Mixed Oxide Supported on a Lanthana-Modified Alumina. Chemistry of Materials, 2002, 14, 844-850.	6.7	26
46	Catalytic behavior of lanthana promoted Rh/SiO2 catalysts: influence of the preparation procedure. Applied Catalysis A: General, 2001, 208, 111-123.	4.3	24
47	Effect of Mild Re-oxidation Treatments with CO2 on the Chemisorption Capability of a Pt/CeO2 Catalyst Reduced at 500°C. Journal of Catalysis, 2001, 200, 411-415.	6.2	48
48	Redox behavior of CeO2–ZrO2 mixed oxides. Applied Catalysis B: Environmental, 2001, 30, 75-85.	20.2	106
49	Modification of the oxygen storage capacity of CeO2–ZrO2 mixed oxides after redox cycling aging. Catalysis Today, 2000, 59, 373-386.	4.4	190
50	Redox behavior of CeO2–ZrO2 mixed oxides. Applied Catalysis B: Environmental, 2000, 27, 49-63.	20.2	220
51	Reduction of High Surface Area CeO2â^'ZrO2Mixed Oxides. Journal of Physical Chemistry B, 2000, 104, 9186-9194.	2.6	150
52	Influence of high temperature treatments under net oxidizing and reducing conditions on the oxygen storage and buffering properties of a Ce0.68Zr0.32O2 mixed oxide. Catalysis Today, 1999, 54, 93-100.	4.4	52
53	Characterization of La2O3/SiO2Mixed Oxide Catalyst Supports. Journal of Catalysis, 1999, 183, 53-62.	6.2	67
54	XPS analysis and microstructural characterization of a Ce/Tb mixed oxide supported on a lanthana-modified transition alumina. Surface and Interface Analysis, 1999, 27, 941-949.	1.8	33

HILARIO VIDAL

#	Article	IF	CITATIONS
55	Oxygen storage capacity improvement using CeO2-ZrO2 mixed oxides in three way catalysts. Studies in Surface Science and Catalysis, 1999, , 257-262.	1.5	9
56	Surface and structural characterization of CexZr1-xO2 CEZIRENCAT mixed oxides as potential three-way catalyst promoters. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3717-3726.	1.7	193
57	Fundamental properties of a new cerium-based mixed oxide alternative as TWC component. Studies in Surface Science and Catalysis, 1998, , 611-618.	1.5	19
58	Influence of the activation conditions on the elimination of residual impurities on ceria-zirconia mixed oxides. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1998, 95, 2048-2060.	0.2	25
59	Influence of the preparation procedure on the chemical and microstructural properties of lanthana promoted Rh/SiO2 catalysts. Journal of Alloys and Compounds, 1997, 250, 461-466.	5.5	18
60	Lanthanide salts as alternative corrosion inhibitors. Journal of Alloys and Compounds, 1995, 225, 638-641.	5.5	57
61	Synthesis, characterization and performance of sol-gel prepared TiO2-SiO2catalysts and supports. Studies in Surface Science and Catalysis, 1995, , 461-470.	1.5	9
62	Characterization of silica dispersed lanthana by CO2 adsorption. Journal of Alloys and Compounds, 1994, 207-208, 201-205.	5.5	5
63	Microstructure and catalytic properties of Rh and Ni dispersed on TiO2-SiO2 aerogels. Journal of Sol-Gel Science and Technology, 1994, 2, 831-836.	2.4	9
64	Catalytic behaviour and surface properties of supported lanthana. Journal of Alloys and Compounds, 1992, 180, 295-301.	5.5	7
65	Electrochemical study of aluminium corrosion in acid chloride solutions. Electrochimica Acta, 1991, 36, 179-187.	5.2	43