Veronica Ferrucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A New Butyrate Releaser Exerts a Protective Action against SARS-CoV-2 Infection in Human Intestine. Molecules, 2022, 27, 862.	1.7	18
2	Loss of Detection of sgN Precedes Viral Abridged Replication in COVID-19-Affected Patients—A Target for SARS-CoV-2 Propagation. International Journal of Molecular Sciences, 2022, 23, 1941.	1.8	4
3	SARS-CoV-2 Pandemic Tracing in Italy Highlights Lineages with Mutational Burden in Growing Subsets. International Journal of Molecular Sciences, 2022, 23, 4155.	1.8	3
4	Germline rare variants of lectin pathway genes predispose to asymptomatic SARS-CoV-2 infection in elderly individuals. Genetics in Medicine, 2022, , .	1.1	7
5	SARS-CoV-2 Subgenomic N (sgN) Transcripts in Oro-Nasopharyngeal Swabs Correlate with the Highest Viral Load, as Evaluated by Five Different Molecular Methods. Diagnostics, 2021, 11, 288.	1.3	25
6	Seroprevalence of SARS-CoV-2 Assessed by Four Chemiluminescence Immunoassays and One Immunocromatography Test for SARS-Cov-2. Frontiers in Public Health, 2021, 9, 649781.	1.3	2
7	Novel human neutralizing mAbs specific for Spike-RBD of SARS-CoV-2. Scientific Reports, 2021, 11, 11046.	1.6	13
8	Long-chain polyphosphates impair SARS-CoV-2 infection and replication. Science Signaling, 2021, 14, .	1.6	27
9	Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer. IScience, 2021, 24, 101938.	1.9	11
10	Functional Genomics of PRUNE1 in Neurodevelopmental Disorders (NDDs) Tied to Medulloblastoma (MB) and Other Tumors. Frontiers in Oncology, 2021, 11, 758146.	1.3	7
11	Protective effects elicited by cow milk fermented with L. Paracasei CBAL74 against SARS-CoV-2 infection in human enterocytes. Journal of Functional Foods, 2021, 87, 104787.	1.6	9
12	Identification of SARS-CoV-2 Proteins from Nasopharyngeal Swabs Probed by Multiple Reaction Monitoring Tandem Mass Spectrometry. ACS Omega, 2021, 6, 34945-34953.	1.6	10
13	A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple-Negative Breast Cancer. IScience, 2020, 23, 101250.	1.9	14
14	Metastatic group 3 medulloblastoma is driven by PRUNE1 targeting NME1–TGF-β–OTX2–SNAIL via PTEN inhibition. Brain, 2018, 141, 1300-1319.	3.7	22
15	A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer. Laboratory Investigation, 2018, 98, 571-581.	1.7	5
16	MBRS-52. TARGETING PRUNE-1 IN A GEMM OF METASTATIC MEDULLOBLASTOMA: A POTENTIAL ROUTE OF INHIBITION FOR NEW FUTURE THERAPIES. Neuro-Oncology, 2018, 20, i139-i139.	0.6	0
17	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	3.9	86
18	The phenotypic and molecular spectrum of PEHO syndrome and PEHO-like disorders. Brain, 2017, 140, e49-e49.	3.7	33

#	Article	IF	CITATIONS
19	PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment. Brain, 2017, 140, 940-952.	3.7	62
20	In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models. Quarterly Journal of Nuclear Medicine and Molecular Imaging, 2017, 61, 95-101.	0.4	5
21	Natural compounds for pediatric cancer treatment. Naunyn-Schmiedeberg's Archives of Pharmacology, 2016, 389, 131-149.	1.4	26
22	Glioblastoma stem cells differentiation through epigenetic modulation is driven by miR-296-5p/HMGA1/Sox2 axis. Translational Cancer Research, 2016, 5, S782-S788.	0.4	2
23	Early Targets of miR-34a in Neuroblastoma. Molecular and Cellular Proteomics, 2014, 13, 2114-2131.	2.5	29
24	MicroRNA 199b-5p delivery through stable nucleic acid lipid particles (SNALPs) in tumorigenic cell lines. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 287-302.	1.4	30