Mengchun Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362577/publications.pdf

Version: 2024-02-01

236925 161849 3,050 55 25 54 citations h-index g-index papers 68 68 68 2751 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pyrrolidineâ^'Thiourea as a Bifunctional Organocatalyst:  Highly Enantioselective Michael Addition of Cyclohexanone to Nitroolefins. Organic Letters, 2006, 8, 2901-2904.	4.6	328
2	Ligand-Promoted C-3 Selective C–H Olefination of Pyridines with Pd Catalysts. Journal of the American Chemical Society, 2011, 133, 6964-6967.	13.7	311
3	Pd(II)-Catalyzed Phosphorylation of Aryl C–H Bonds. Journal of the American Chemical Society, 2013, 135, 9322-9325.	13.7	280
4	Ligand-Promoted C3-Selective Arylation of Pyridines with Pd Catalysts: Gram-Scale Synthesis of $(A\pm)$ -Preclamol. Journal of the American Chemical Society, 2011, 133, 19090-19093.	13.7	243
5	Controllable Enantioselective Friedelâ°Crafts Reaction1between Indoles and Alkylidene Malonates Catalyzed by Pseudo-C3-Symmetric Trisoxazoline Copper(II) Complexes. Journal of Organic Chemistry, 2004, 69, 1309-1320.	3.2	160
6	Enantioselective Ni–Al Bimetallic Catalyzed <i>exo</i> Selective C–H Cyclization of Imidazoles with Alkenes. Journal of the American Chemical Society, 2018, 140, 5360-5364.	13.7	120
7	Trisoxazoline/Cu(II)-Promoted Kinugasa Reaction. Enantioselective Synthesis of \hat{I}^2 -Lactams. Journal of Organic Chemistry, 2006, 71, 3576-3582.	3.2	107
8	A robust protocol for Pd(ii)-catalyzed C-3 arylation of (1H) indazoles and pyrazoles: total synthesis of nigellidine hydrobromide. Chemical Science, 2013, 4, 2374.	7.4	93
9	Diastereoselectivity-Switchable and Highly Enantioselective 1,3-Dipolar Cycloaddition of Nitrones to Alkylidene Malonates. Organic Letters, 2004, 6, 1677-1679.	4.6	87
10	Chiral tris(oxazoline)/Cu(ii) catalyzed coupling of terminal alkynes and nitronesElectronic supplementary information (ESI) available: experimental. See http://www.rsc.org/suppdata/cc/b3/b306653c/. Chemical Communications, 2003, , 2554.	4.1	78
11	Ligandâ€Accelerated Direct Câ^'H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Diaryl BINOLs. Angewandte Chemie - International Edition, 2016, 55, 14116-14120.	13.8	73
12	Transition Metal–Catalyzed Allylic C(sp ³)–H Functionalization <i>via Î</i> ³ â€Allylmetal Intermediate. Chinese Journal of Chemistry, 2019, 37, 720-743.	4.9	71
13	Ni–Al Bimetallic Catalyzed Enantioselective Cycloaddition of Cyclopropyl Carboxamide with Alkyne. Journal of the American Chemical Society, 2017, 139, 18150-18153.	13.7	67
14	A directive Ni catalyst overrides conventional site selectivity in pyridine Câ€"H alkenylation. Nature Chemistry, 2021, 13, 1207-1213.	13.6	67
15	Amide-Ligand-Controlled Highly <i>para</i> Selective Arylation of Monosubstituted Simple Arenes with Arylboronic Acids. Journal of the American Chemical Society, 2017, 139, 1786-1789.	13.7	66
16	Enantioselective Twofold Câ^'H Annulation of Formamides and Alkynes without Builtâ€in Chelating Groups. Angewandte Chemie - International Edition, 2020, 59, 9428-9432.	13.8	56
17	Conformational Variations of Both Phosphodiesterase-5 and Inhibitors Provide the Structural Basis for the Physiological Effects of Vardenafil and Sildenafil. Molecular Pharmacology, 2008, 73, 104-110.	2.3	55
18	Modular Synthesis of Chiral Homo- and Heterotrisoxazolines. Improving the Enantioselectivity in the Asymmetric Michael Addition of Indole to Benzylidene Malonate. Journal of Organic Chemistry, 2005, 70, 6108-6110.	3.2	54

#	Article	IF	CITATIONS
19	Carbamoyl Fluoride-Enabled Enantioselective Ni-Catalyzed Carbocarbamoylation of Unactivated Alkenes. Journal of the American Chemical Society, 2020, 142, 19844-19849.	13.7	49
20	Base-free nickel-catalyzed hydroboration of simple alkenes with bis(pinacolato)diboron in an alcoholic solvent. Green Chemistry, 2017, 19, 4498-4502.	9.0	45
21	Sidearm Approach:Â A Promising Strategy for Construction of Bisoxazoline-Based Ligand Library. ACS Combinatorial Science, 2004, 6, 301-304.	3.3	42
22	Recent advances in Niâ^'Al bimetallic catalysis for unreactive bond transformation. Science China Chemistry, 2018, 61, 1004-1013.	8.2	39
23	Ironâ€Catalyzed Regioselective Transfer Hydrogenative Couplings of Unactivated Aldehydes with Simple Alkenes. Angewandte Chemie - International Edition, 2016, 55, 6315-6318.	13.8	35
24	Chiral Aluminum Complex Controls Enantioselective Nickelâ€Catalyzed Synthesis of Indenes: Câ^'CN Bond Activation. Angewandte Chemie - International Edition, 2020, 59, 7439-7443.	13.8	32
25	Selective C(sp ³)–H Cleavage of Enamides for Synthesis of 2-Pyridones via Ligand-Enabled Ni–Al Bimetallic Catalysis. ACS Catalysis, 2021, 11, 858-864.	11.2	30
26	Ligandâ€Promoted Iron(III) atalyzed Hydrofluorination of Alkenes. Angewandte Chemie - International Edition, 2019, 58, 7097-7101.	13.8	29
27	Ligandâ€Accelerated Direct Câ^'H Arylation of BINOL: A Rapid Oneâ€Step Synthesis of Racemic 3,3′â€Diaryl BINOLs. Angewandte Chemie, 2016, 128, 14322-14326.	2.0	26
28	Ligand-Enabled Ni–Al Bimetallic Catalysis for Nonchelated Dual C–H Annulation of Arylformamides and Alkynes. Organic Letters, 2020, 22, 2230-2234.	4.6	26
29	Ligand-Controlled Ni(0)–Al(III) Bimetal-Catalyzed C3–H Alkenylation of 2-Pyridones by Reversing Conventional Selectivity. ACS Catalysis, 2021, 11, 4606-4612.	11.2	26
30	DMF-Promoted Redox-Neutral Ni-Catalyzed Intramolecular Hydroarylation of Alkene with Simple Arene. ACS Catalysis, 2018, 8, 3913-3917.	11.2	25
31	Construction 7-membered ring via Ni–Al bimetal-enabled C–H cyclization for synthesis of tricyclic imidazoles. Nature Communications, 2021, 12, 3070.	12.8	25
32	Bimetallic anchoring catalysis for C-H and C-C activation. Science China Chemistry, 2021, 64, 1923-1937.	8.2	24
33	Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by Crystal Structures and Mutagenesis. Journal of Medicinal Chemistry, 2010, 53, 1726-1731.	6.4	23
34	Structural Insight into the Substrate Specificity of Phosphodiesterases. Handbook of Experimental Pharmacology, 2011, , 121-134.	1.8	23
35	BrÃ,nsted Acid Enabled Nickelâ€Catalyzed Hydroalkenylation of Aldehydes with Styrene and its Derivatives. Angewandte Chemie - International Edition, 2018, 57, 5068-5071.	13.8	23
36	NHC ligand-enabled Ni-catalyzed reductive coupling of alkynes and imines using isopropanol as a reductant. Green Chemistry, 2019, 21, 2240-2244.	9.0	22

#	Article	IF	CITATIONS
37	Ni-Catalyzed Dual C–H Annulation of Benzimidazoles with Alkynes for Synthesis of π-Extended Heteroarenes. Organic Letters, 2021, 23, 4034-4039.	4.6	19
38	Trisoxazoline/Cu(II)-catalyzed asymmetric intramolecular Friedel–Crafts alkylation reaction of indoles. Tetrahedron, 2009, 65, 6877-6881.	1.9	18
39	Ni-catalyzed hydroarylation of alkynes with unactivated \hat{l}^2 -C(sp2) \hat{a} -H bonds. Nature Communications, 2022, 13, .	12.8	18
40	<scp>Wellâ€Designed</scp> Chiral Ligands for Enantioselective <scp>Irâ€Catalyzed</scp> C(sp ²)–H Borylation ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1762-1766.	4.9	17
41	Ni-catalyzed hydroaminoalkylation of alkynes with amines. Nature Communications, 2021, 12, 3800.	12.8	16
42	P(NMe2)3-promoted ortho-selective arylation of phenols with diaryliodonium triflates via rhodium catalysis. Tetrahedron, 2017, 73, 3591-3595.	1.9	15
43	Identification of a PDE4-Specific Pocket for the Design of Selective Inhibitors. Biochemistry, 2018, 57, 4518-4525.	2.5	12
44	Nickelâ€Catalyzed Reductive Coupling of Aldehydes with Alkynes Mediated by Alcohol â€. Chinese Journal of Chemistry, 2020, 38, 489-493.	4.9	12
45	Transition Metal-Catalyzed Câ€"P Bond Activation. Chinese Journal of Organic Chemistry, 2021, 41, 3880.	1.3	12
46	Enantioselective Twofold Câ^'H Annulation of Formamides and Alkynes without Builtâ€in Chelating Groups. Angewandte Chemie, 2020, 132, 9514-9518.	2.0	8
47	Ironâ€Catalyzed Regioselective Transfer Hydrogenative Couplings of Unactivated Aldehydes with Simple Alkenes. Angewandte Chemie, 2016, 128, 6423-6426.	2.0	7
48	Construction of Medium Rings via Transition Metal-Catalyzed Insertion of Ï∈-Unsaturated Compounds into C—H Bonds. Chinese Journal of Organic Chemistry, 2020, 40, 3196.	1.3	7
49	Diastereoselective Tandem Michael Additions of Indoles to 3-Nitrocoumarin Derivatives and Methyl Vinyl Ketone. Synlett, 2006, 2006, 1240-1244.	1.8	6
50	Ligandâ€Promoted Iron(III)â€Catalyzed Hydrofluorination of Alkenes. Angewandte Chemie, 2019, 131, 7171-7175.	2.0	6
51	Chiral Aluminum Complex Controls Enantioselective Nickelâ€Catalyzed Synthesis of Indenes: Câ^'CN Bond Activation. Angewandte Chemie, 2020, 132, 7509-7513.	2.0	4
52	Recent Progress in Base Metal Catalyzed (Transfer) Hydrogenative Couplings of Carbonyls with π-Unsaturated Compounds. Synlett, 2016, 27, 2401-2406.	1.8	3
53	Nickel- and BrÃnsted Acid-Catalyzed Redox-Neutral Coupling of 1,3-Dienes and Aldehydes for Synthesis of Dienols. CCS Chemistry, 2021, 3, 955-963.	7.8	3
54	Ironâ€Catalyzed Intramolecular Reductive Coupling of Unactivated Aldehydes and Arylalkenes with Isopropanol. Asian Journal of Organic Chemistry, 2018, 7, 554-557.	2.7	3

#	Article	IF	CITATIONS
55	Brønsted Acid Enabled Nickelâ€Catalyzed Hydroalkenylation of Aldehydes with Styrene and its Derivatives. Angewandte Chemie, 2018, 130, 5162-5165.	2.0	2