Maria J Moreno-Aliaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism: Clinical and Experimental, 2015, 64, 35-46.	3.4	347
2	Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. Journal of Physiology and Biochemistry, 2013, 69, 633-651.	3.0	322
3	Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-α. British Journal of Nutrition, 2007, 97, 389-398.	2.3	191
4	Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins and Other Lipid Mediators, 2015, 121, 24-41.	1.9	159
5	Oxidative Stress and Non-Alcoholic Fatty Liver Disease: Effects of Omega-3 Fatty Acid Supplementation. Nutrients, 2019, 11, 872.	4.1	159
6	DNA Microarray Analysis of Genes Differentially Expressed in Dietâ€Induced (Cafeteria) Obese Rats. Obesity, 2003, 11, 188-194.	4.0	136
7	Role of obesity-associated dysfunctional adipose tissue in cancer: A molecular nutrition approach. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 664-678.	1.0	126
8	Genes, lifestyles and obesity. International Journal of Obesity, 2004, 28, S29-S36.	3.4	119
9	Cardiotrophin-1 Is a Key Regulator of Glucose and Lipid Metabolism. Cell Metabolism, 2011, 14, 242-253.	16.2	103
10	Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochemical and Biophysical Research Communications, 2006, 339, 785-789.	2.1	97
11	Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss. Obesity, 2015, 23, 313-321.	3.0	91
12	An update on the role of omega-3 fatty acids on inflammatory and degenerative diseases. Journal of Physiology and Biochemistry, 2015, 71, 341-349.	3.0	90
13	Regulation of adipokine secretion by <i>n</i> -3 fatty acids. Proceedings of the Nutrition Society, 2010, 69, 324-332.	1.0	89
14	Role of Omentin, Vaspin, Cardiotrophin-1, TWEAK and NOV/CCN3 in Obesity and Diabetes Development. International Journal of Molecular Sciences, 2017, 18, 1770.	4.1	81
15	Maresin 1 improves insulin sensitivity and attenuates adipose tissue inflammation in ob/ob and dietâ€induced obese mice. FASEB Journal, 2017, 31, 2135-2145.	0.5	80
16	Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: role of glucose metabolism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1682-R1688.	1.8	73
17	Lipoic Acid Improves Mitochondrial Function in Nonalcoholic Steatosis Through the Stimulation of Sirtuin 1 and Sirtuin 3. Obesity, 2012, 20, 1974-1983.	3.0	72
18	Transcriptional Regulation of the Leptin Promoter by Insulin-Stimulated Glucose Metabolism in 3T3-L1 Adipocytes. Biochemical and Biophysical Research Communications, 2001, 283, 544-548.	2.1	71

Maria J Moreno-Aliaga

#	Article	IF	CITATIONS
19	Does weight loss prognosis depend on genetic make-up?. Obesity Reviews, 2005, 6, 155-168.	6.5	70
20	Predictor factors for childhood obesity in a Spanish case-control study. Nutrition, 2007, 23, 379-384.	2.4	70
21	Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clinical Science, 2009, 117, 243-249.	4.3	69
22	Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. Journal of Nutritional Biochemistry, 2016, 37, 76-82.	4.2	67
23	Lipoic acid prevents body weight gain induced by a high fat diet in rats: Effects on intestinal sugar transport. Journal of Physiology and Biochemistry, 2009, 65, 43-50.	3.0	65
24	ZAG, a lipid mobilizing adipokine, is downregulated in human obesity. Journal of Physiology and Biochemistry, 2008, 64, 61-66.	3.0	63
25	Effects of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)-ethane (p,p′-DDT) on 3T3-L1 and 3T3-F442A adipocyte differentiation. Biochemical Pharmacology, 2002, 63, 997-1007.	4.4	62
26	Gene–gene interaction between PPARγ2 and ADRβ3 increases obesity risk in children and adolescents. International Journal of Obesity, 2004, 28, S37-S41.	3.4	62
27	Maresin 1 mitigates liver steatosis in ob/ob and diet-induced obese mice. International Journal of Obesity, 2018, 42, 572-579.	3.4	60
28	Enhanced gene delivery in vitro and in vivo by improved transferrin-lipoplexes. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1561, 209-221.	2.6	57
29	Effects of eicosapentaenoic acid ethyl ester on visfatin and apelin in lean and overweight (cafeteria) Tj ETQq1 1	0.784314	rg <u>B</u> T/Overloc
30	Association between obesity and insulin resistance with UCP2–UCP3 gene variants in Spanish children and adolescents. Molecular Genetics and Metabolism, 2007, 92, 351-358.	1.1	56
31	Cardiotrophin-1 eliminates hepatic steatosis in obese mice by mechanisms involving AMPK activation. Journal of Hepatology, 2014, 60, 1017-1025.	3.7	54
32	Reporting Guidelines, Review of Methodological Standards, and Challenges Toward Harmonization in Bone Marrow Adiposity Research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Frontiers in Endocrinology, 2020, 11, 65.	3.5	53
33	Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid. Journal of Physiology and Biochemistry, 2015, 71, 547-558.	3.0	50
34	Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radical Biology and Medicine, 2015, 84, 263-278.	2.9	50
35	α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 273-281.	2.4	48
36	Differential inflammatory status in rats susceptible or resistant to diet-induced obesity: effects of EPA ethyl ester treatment. European Journal of Nutrition, 2008, 47, 380-386.	3.9	47

#	Article	IF	CITATIONS
37	Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display. Biochemical and Biophysical Research Communications, 2004, 318, 234-239.	2.1	46
38	Effects of eicosapentaenoic acid (EPA) on adiponectin gene expression and secretion in primary cultured rat adipocytes. Journal of Physiology and Biochemistry, 2006, 62, 61-69.	3.0	46
39	Conjugated linoleic acid inhibits glucose metabolism, leptin and adiponectin secretion in primary cultured rat adipocytes. Molecular and Cellular Endocrinology, 2007, 268, 50-58.	3.2	46
40	Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. Journal of Lipid Research, 2012, 53, 2296-2306.	4.2	46
41	Lipoic acid administration prevents nonalcoholic steatosis linked to long-term high-fat feeding by modulating mitochondrial function. Journal of Nutritional Biochemistry, 2012, 23, 1676-1684.	4.2	46
42	Vitamin C inhibits leptin secretion and some glucose/lipid metabolic pathways in primary rat adipocytes. Journal of Molecular Endocrinology, 2010, 45, 33-43.	2.5	44
43	Supplementation with α-Lipoic Acid Alone or in Combination with Eicosapentaenoic Acid Modulates the Inflammatory Status of Healthy Overweight or Obese Women Consuming an Energy-Restricted Diet. Journal of Nutrition, 2016, 146, 889S-896S.	2.9	44
44	Eicosapentaenoic acid upâ€regulates apelin secretion and gene expression in 3T3â€L1 adipocytes. Molecular Nutrition and Food Research, 2010, 54, S104-11.	3.3	43
45	A Dysregulation in <i>CES1, APOE</i> and Other Lipid Metabolism-Related Genes Is Associated to Cardiovascular Risk Factors Linked to Obesity. Obesity Facts, 2010, 3, 312-318.	3.4	43
46	Effects of lipoic acid on AMPK and adiponectin in adipose tissue of low- and high-fat-fed rats. European Journal of Nutrition, 2013, 52, 779-787.	3.9	43
47	Differential DNA Methylation in Relation to Age and Health Risks of Obesity. International Journal of Molecular Sciences, 2015, 16, 16816-16832.	4.1	43
48	Genetics of obesity. Public Health Nutrition, 2007, 10, 1138-1144.	2.2	42
49	Endogenous Retroelement Activation by Epigenetic Therapy Reverses the Warburg Effect and Elicits Mitochondrial-Mediated Cancer Cell Death. Cancer Discovery, 2021, 11, 1268-1285.	9.4	42
50	Cardiotrophin-1: A multifaceted cytokine. Cytokine and Growth Factor Reviews, 2015, 26, 523-532.	7.2	41
51	Sp1-mediated transcription is involved in the induction of leptin by insulin-stimulated glucose metabolism. Journal of Molecular Endocrinology, 2007, 38, 537-546.	2.5	39
52	Down-regulation in muscle and liver lipogenic genes: EPA ethyl ester treatment in lean and overweight (high-fat-fed) rats. Journal of Nutritional Biochemistry, 2009, 20, 705-714.	4.2	37
53	Endrin Inhibits Adipocyte Differentiation by Selectively Altering Expression Pattern of CCAAT/Enhancer Binding Protein-α in 3T3-L1 Cells. Molecular Pharmacology, 1999, 56, 91-101.	2.3	36
54	Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes. Molecular Nutrition and Food Research, 2011, 55, 1059-1069.	3.3	36

#	Article	IF	CITATIONS
55	<i>FTO</i> Obesity Variant and Adipocyte Browning in Humans. New England Journal of Medicine, 2016, 374, 190-193.	27.0	36
56	Serum and gene expression levels of leptin and adiponectin in rats susceptible or resistant to diet-induced obesity. Journal of Physiology and Biochemistry, 2005, 61, 333-342.	3.0	35
57	α -lipoic acid reduces fatty acid esterification and lipogenesis in adipocytes from overweight/obese subjects. Obesity, 2014, 22, 2210-2215.	3.0	34
58	A Fermented Food Product Containing Lactic Acid Bacteria Protects ZDF Rats from the Development of Type 2 Diabetes. Nutrients, 2019, 11, 2530.	4.1	33
59	Aspectos genéticos da obesidade. Revista De Nutricao, 2004, 17, 327-338.	0.4	32
60	High-fat feeding period affects gene expression in rat white adipose tissue. Molecular and Cellular Biochemistry, 2005, 275, 109-115.	3.1	32
61	Differences in short-term metabolic responses to a lipid load in lean (resistant) vs obese (susceptible) young male subjects with habitual high-fat consumption. European Journal of Clinical Nutrition, 2007, 61, 166-174.	2.9	31
62	Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes. Journal of Nutritional Biochemistry, 2012, 23, 218-227.	4.2	31
63	Effects of dietary supplementation with EPA and/or αâ€lipoic acid on adipose tissue transcriptomic profile of healthy overweight/obese women following a hypocaloric diet. BioFactors, 2017, 43, 117-131.	5.4	31
64	Maresin 1 inhibits TNFâ€alphaâ€induced lipolysis and autophagy in 3T3â€L1 adipocytes. Journal of Cellular Physiology, 2018, 233, 2238-2246.	4.1	31
65	Linoleic Acid Decreases Leptin and Adiponectin Secretion from Primary Rat Adipocytes in the Presence of Insulin. Lipids, 2007, 42, 913-920.	1.7	29
66	DNA hybridization arrays: a powerful technology for nutritional and obesity research. British Journal of Nutrition, 2001, 86, 119-122.	2.3	26
67	Differential Proinflammatory and Oxidative Stress Response and Vulnerability to Metabolic Syndrome in Habitual High-Fat Young Male Consumers Putatively Predisposed by Their Genetic Background. International Journal of Molecular Sciences, 2013, 14, 17238-17255.	4.1	26
68	Serum and gene expression levels of CT-1, IL-6, and TNF-α after a lifestyle intervention in obese children. Pediatric Diabetes, 2018, 19, 217-222.	2.9	26
69	Leptin signaling as a therapeutic target of obesity. Expert Opinion on Therapeutic Targets, 2015, 19, 893-909.	3.4	25
70	Effects of lipoic acid on apelin in 3T3-L1 adipocytes and in high-fat fed rats. Journal of Physiology and Biochemistry, 2011, 67, 479-486.	3.0	24
71	TV watching modifies obesity risk linked to the 27Glu polymorphism of the ADRB2 gene in girls. Pediatric Obesity, 2006, 1, 83-88.	3.2	23
72	Decreased cardiotrophin-1 levels are associated with a lower risk of developing the metabolic syndrome in overweight/obese children after a weight loss program. Metabolism: Clinical and Experimental, 2013, 62, 1429-1436.	3.4	23

MARIA J MORENO-ALIAGA

#	Article	IF	CITATIONS
73	Differential toxicities of TCDD in vivo among normal, c-src knockout, geldanamycin- and quercetin-treated mice. Toxicology, 1999, 135, 95-107.	4.2	22
74	Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis. Molecular Metabolism, 2018, 7, 132-146.	6.5	22
75	Maresin 1 Regulates Hepatic FGF21 in Dietâ€Induced Obese Mice and in Cultured Hepatocytes. Molecular Nutrition and Food Research, 2019, 63, e1900358.	3.3	21
76	Lipoic acid improves neuronal insulin signalling and rescues cognitive function regulating VGlut1 expression in high-fat-fed rats: Implications for Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 511-517.	3.8	20
77	Vitamin C modulates the interaction between adipocytes and macrophages. Molecular Nutrition and Food Research, 2011, 55, S257-63.	3.3	19
78	Cardiotrophin-1 stimulates lipolysis through the regulation of main adipose tissue lipases. Journal of Lipid Research, 2014, 55, 2634-2643.	4.2	19
79	Determinants of Self-Rated Health Perception in a Sample of a Physically Active Population: PLENUFAR VI Study. International Journal of Environmental Research and Public Health, 2018, 15, 2104.	2.6	18
80	Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. Journal of Physiology and Biochemistry, 2020, 76, 251-267.	3.0	18
81	Maresin 1 regulates insulin signaling in human adipocytes as well as in adipose tissue and muscle of lean and obese mice. Journal of Physiology and Biochemistry, 2021, 77, 167-173.	3.0	18
82	Effects of Long-Term DHA Supplementation and Physical Exercise on Non-Alcoholic Fatty Liver Development in Obese Aged Female Mice. Nutrients, 2021, 13, 501.	4.1	18
83	Changes in brown adipose tissue lipid mediator signatures with aging, obesity, and DHA supplementation in female mice. FASEB Journal, 2021, 35, e21592.	0.5	18
84	Effects of DHA-Rich n-3 Fatty Acid Supplementation and/or Resistance Training on Body Composition and Cardiometabolic Biomarkers in Overweight and Obese Post-Menopausal Women. Nutrients, 2021, 13, 2465.	4.1	18
85	Lindane Treatment Alters both Intestinal Mucosa Composition and Brush Border Enzymatic Activity in Chickens. Pesticide Biochemistry and Physiology, 1995, 52, 212-221.	3.6	17
86	Effects of Trecadrine®, a β3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes. International Journal of Obesity, 2002, 26, 912-919.	3.4	17
87	A novel mutation Thr162Arg of the melanocortin 4 receptor gene in a Spanish children and adolescent population. Clinical Endocrinology, 2007, 66, 652-658.	2.4	17
88	Some Cyclin-Dependent Kinase Inhibitors-Related Genes Are Regulated by Vitamin C in a Model of Diet-Induced Obesity. Biological and Pharmaceutical Bulletin, 2009, 32, 1462-1468.	1.4	17
89	Role of cardiotrophin-1 in obesity and insulin resistance. Adipocyte, 2012, 1, 112-115.	2.8	17
90	GLUT12 and adipose tissue: Expression, regulation and its relation with obesity in mice. Acta Physiologica, 2019, 226, e13283.	3.8	17

MARIA J MORENO-ALIAGA

#	Article	IF	CITATIONS
91	Efectos del ácido araquidónico sobre la secreción y expresión de leptina en cultivos primarios de adipocitos de rata. Journal of Physiology and Biochemistry, 2003, 59, 201-208.	3.0	16
92	Endoplasmic reticulum stress epigenetics is related to adiposity, dyslipidemia, and insulin resistance. Adipocyte, 2018, 7, 1-6.	2.8	16
93	Effects of EPA and lipoic acid supplementation on circulating FGF21 and the fatty acid profile in overweight/obese women following a hypocaloric diet. Food and Function, 2018, 9, 3028-3036.	4.6	16
94	EPA blocks TNFâ€Î±â€induced inhibition of sugar uptake in Cacoâ€2 cells via GPR120 and AMPK. Journal of Cellular Physiology, 2018, 233, 2426-2433.	4.1	16
95	Effects of a β3-Adrenergic Agonist on Glucose Uptake and Leptin Expression and Secretion in Cultured Adipocytes from Lean and Overweight (Cafeteria) Rats. Biochemical and Biophysical Research Communications, 2002, 291, 1201-1207.	2.1	15
96	NF-κB-binding activity in an animal diet-induced overweightness model and the impact of subsequent energy restriction. Biochemical and Biophysical Research Communications, 2003, 311, 533-539.	2.1	15
97	p27, The Cell Cycle and Alzheimer´s Disease. International Journal of Molecular Sciences, 2022, 23, 1211.	4.1	15
98	Glucose and insulin modify thrombospondin 1 expression and secretion in primary adipocytes from diet-induced obese rats. Journal of Physiology and Biochemistry, 2011, 67, 453-461.	3.0	14
99	Effects of Maresin 1 (MaR1) on Colonic Inflammation and Gut Dysbiosis in Diet-Induced Obese Mice. Microorganisms, 2020, 8, 1156.	3.6	14
100	High Prevalence of Insulin Resistance in Asymptomatic Patients with Acute Intermittent Porphyria and Liver-Targeted Insulin as a Novel Therapeutic Approach. Biomedicines, 2021, 9, 255.	3.2	14
101	Effects of inhibiting transcription and protein synthesis on basal and insulin-stimulated leptin gene expression and leptin secretion in cultured rat adipocytes. Biochemical and Biophysical Research Communications, 2003, 307, 907-914.	2.1	13
102	Orchestrated downregulation of genes involved in oxidative metabolic pathways in obese vs. lean high-fat young male consumers. Journal of Physiology and Biochemistry, 2011, 67, 15-26.	3.0	13
103	Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid. Experimental Biology and Medicine, 2012, 237, 407-416.	2.4	13
104	Antiobesity effects of \hat{i} ±-lipoic acid supplementation. Clinical Lipidology, 2013, 8, 371-383.	0.4	13
105	Untargeted metabolomic on urine samples after α-lipoic acid and/or eicosapentaenoic acid supplementation in healthy overweight/obese women. Lipids in Health and Disease, 2018, 17, 103.	3.0	13
106	DHA Selectively Protects SAMP-8-Associated Cognitive Deficits Through Inhibition of JNK. Molecular Neurobiology, 2019, 56, 1618-1627.	4.0	13
107	Association between leptin receptor (LEPR) and brain-derived neurotrophic factor (BDNF) gene variants and obesity: a case-control study. Nutritional Neuroscience, 2009, 12, 183-188.	3.1	12
108	Inflammation stimulates hypoxiaâ€inducible factorâ€1α regulatory activity in 3T3â€L1 adipocytes with conditioned medium from lipopolysaccharideâ€activated RAW 264.7 macrophages. Journal of Cellular Physiology, 2019, 234, 550-560.	4.1	12

#	Article	IF	CITATIONS
109	Cardiotrophinâ€1 decreases intestinal sugar uptake in mice and in <scp>C</scp> acoâ€2 cells. Acta Physiologica, 2016, 217, 217-226.	3.8	11
110	DHA and its derived lipid mediators MaR1, RvD1 and RvD2 block TNF-α inhibition of intestinal sugar and glutamine uptake in Caco-2 cells. Journal of Nutritional Biochemistry, 2020, 76, 108264.	4.2	11
111	Down-regulation of heart HFABP and UCP2 gene expression in diet-induced (cafeteria) obese rats. Journal of Physiology and Biochemistry, 2002, 58, 69-74.	3.0	10
112	Lipoic acid inhibits adiponectin production in 3T3-L1 adipocytes. Journal of Physiology and Biochemistry, 2013, 69, 595-600.	3.0	10
113	Papel de genes adipogénicos y termogénicos en la resistencia o susceptibilidad al desarrollo de obesidad inducida por la dieta en rata. Journal of Physiology and Biochemistry, 2007, 63, 317-327.	3.0	9
114	Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 260-268.	2.4	9
115	Impact of dietary lipoic acid supplementation on liver mitochondrial bioenergetics and oxidative status on normally fed Wistar rats. International Journal of Food Sciences and Nutrition, 2019, 70, 834-844.	2.8	8
116	n-3 polyunsaturated fatty acids regulate chemerin in cultured adipocytes: role of GPR120 and derived lipid mediators. Food and Function, 2020, 11, 9057-9066.	4.6	8
117	Correlation between the high expression of C/EBP? protein in F442A cells and their relative resistance to antiadipogenic action of TCDD in comparison to 3T3-L1 cells. Journal of Biochemical and Molecular Toxicology, 2002, 16, 70-83.	3.0	7
118	Role of cardiotrophinâ€1 in the regulation of metabolic circadian rhythms and adipose core clock genes in mice and characterization of 24â€h circulating CTâ€1 profiles in normalâ€weight and overweight/obese subjects. FASEB Journal, 2017, 31, 1639-1649.	0.5	6
119	Cardiotrophinâ€1 Regulates Adipokine Production in 3T3â€L1 Adipocytes and Adipose Tissue From Obese Mice. Journal of Cellular Physiology, 2017, 232, 2469-2477.	4.1	6
120	Inflammation and Oxidative Stress in Adipose Tissue. , 2018, , 63-92.		6
121	Basolateral presence of the proinflammatory cytokine tumor necrosis factor -1± and secretions from adipocytes and macrophages reduce intestinal sugar transport. Journal of Cellular Physiology, 2019, 234, 4352-4361.	4.1	6
122	Effect of aging and obesity on GLUT12 expression in small intestine, adipose tissue, muscle, and kidney and its regulation by docosahexaenoic acid and exercise in mice. Applied Physiology, Nutrition and Metabolism, 2020, 45, 957-967.	1.9	6
123	Effects of in Vivo Captan Administration on Cytotoxicity, Gluconeogenesis, ATP Levels, and Parameters Related to Oxidative Stress in Rat Liver. Pesticide Biochemistry and Physiology, 1999, 64, 185-193.	3.6	5
124	Erythrocyte antioxidant defenses as a potential biomarker of liver mitochondrial status in different oxidative conditions. Biomarkers, 2011, 16, 670-678.	1.9	4
125	Nutrients, Obesity and Gene Expression. , 2020, , 431-440.		4
126	Regulation of p27 and Cdk2 Expression in Different Adipose Tissue Depots in Aging and Obesity. International Journal of Molecular Sciences, 2021, 22, 11745.	4.1	4

Maria J Moreno-Aliaga

#	Article	IF	CITATIONS
127	Ptpn1 deletion protects oval cells against lipoapoptosis by favoring lipid droplet formation and dynamics. Cell Death and Differentiation, 2022, 29, 2362-2380.	11.2	4
128	Alpha-Lipoic Acid: A Dietary Supplement With Therapeutic Potential for Obesity and Related Metabolic Diseases. , 2019, , 85-92.		3
129	Nutritional and metabolic regulation of brown and beige adipose tissues. Journal of Physiology and Biochemistry, 2020, 76, 181-184.	3.0	3
130	Effects of in situ and systemic lindane treatment on in vivo absorption of galactose and leucine in rat jejunum. Archives of Toxicology, 1996, 70, 767-772.	4.2	2
131	Differential peripheral blood methylation by $\hat{l}\pm$ -lipoic acid and EPA supplementation in overweight or obese women during a weight loss program. Journal of Functional Foods, 2017, 36, 178-185.	3.4	2
132	Editorial: Diet, Inflammation and Colorectal Cancer. Frontiers in Immunology, 2019, 10, 2598.	4.8	2
133	Dietary Determinants of Fat Mass and Body Composition. , 2017, , 319-382.		1
134	Cardiotrophinâ€1 contributes to metabolic adaptations through the regulation of lipid metabolism and to the fastingâ€induced fatty acid mobilization. FASEB Journal, 2020, 34, 15875-15887.	0.5	1
135	Eicosapentaenoic acid (EPA) prevents TNF-α-induced NF-αB and ERK 1/2 activation in 3T3-L1 adipocytes. Proceedings of the Nutrition Society, 2010, 69, .	1.0	0
136	Role of Omega-3 Fatty Acids in Metabolic Syndrome. , 2016, , 189-202.		0
137	Interactions Between Age, Diet, and Insulin and Their Effect on Cognition. , 2018, , 223-238.		0
138	Cardiotrophin-1: a new player in energy metabolism with potential therapeutic application. Aging, 2011, 3, 698-699.	3.1	0
139	Dietary Determinants of Fat Mass and Body Composition. , 2012, , 271-315.		Ο