Jyotirmayee Mohanty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3362054/publications.pdf

Version: 2024-02-01

90 papers 4,811 citations

36 h-index 95218 68 g-index

93 all docs 93 docs citations

93 times ranked 3615 citing authors

#	Article	IF	CITATIONS
1	Thioflavin T as an Efficient Inducer and Selective Fluorescent Sensor for the Human Telomeric G-Quadruplex DNA. Journal of the American Chemical Society, 2013, 135, 367-376.	6.6	553
2	Hostâ^'Guest Complexation of Neutral Red with Macrocyclic Host Molecules: Contrasting pKaShifts and Binding Affinities for Cucurbit[7]uril and β-Cyclodextrin. Journal of Physical Chemistry B, 2006, 110, 5132-5138.	1.2	266
3	Ultrastable Rhodamine with Cucurbituril. Angewandte Chemie - International Edition, 2005, 44, 3750-3754.	7.2	256
4	Efficient Fluorescence Enhancement and Cooperative Binding of an Organic Dye in a Supra-biomolecular Host–Protein Assembly. Angewandte Chemie - International Edition, 2007, 46, 4120-4122.	7.2	206
5	Cooperative Metal Ion Binding to a Cucurbit[7]urilâ^'Thioflavin T Complex: Demonstration of a Stimulus-Responsive Fluorescent Supramolecular Capsule. Journal of the American Chemical Society, 2010, 132, 1395-1401.	6.6	180
6	Taming fluorescent dyes with cucurbituril. International Journal of Photoenergy, 2005, 7, 133-141.	1.4	175
7	Cucurbit[n]uril based supramolecular assemblies: tunable physico-chemical properties and their prospects. Chemical Communications, 2011, 47, 9959.	2.2	168
8	Complexation of acridine orange by cucurbit [7] uril and \hat{l}^2 -cyclodextrin: photophysical effects and pKa shifts. Photochemical and Photobiological Sciences, 2008, 7, 408-414.	1.6	161
9	Targeting G-quadruplex structures with extrinsic fluorogenic dyes: promising fluorescence sensors. Chemical Communications, 2015, 51, 7581-7597.	2.2	147
10	Salt-induced guest relocation from a macrocyclic cavity into a biomolecular pocket: interplay between cucurbit[7]uril and albumin. Chemical Communications, 2008, , 3681.	2.2	125
11	Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene. Photochemical and Photobiological Sciences, 2004, 3, 1026.	1.6	98
12	Supramolecular Dye Laser with Cucurbit[7]uril in Water. ChemPhysChem, 2007, 8, 54-56.	1.0	96
13	Control of the Supramolecular Excimer Formation of Thioflavin T within a Cucurbit[8]uril Host: A Fluorescence On/Off Mechanism. Chemistry - A European Journal, 2009, 15, 5215-5219.	1.7	93
14	Noncovalent Interaction of 5,10,15,20-Tetrakis(4- <i>N</i> -methylpyridyl)porphyrin with Cucurbit[7]uril: A Supramolecular Architecture. Journal of Physical Chemistry B, 2008, 112, 10782-10785.	1.2	92
15	Modulation of Excitedâ€State Proton Transfer of 2â€(2′â€Hydroxyphenyl)benzimidazole in a Macrocyclic Cucurbit[7]uril Host Cavity: Dual Emission Behavior and p <i>K</i> _a Shift. Chemistry - A European Journal, 2009, 15, 12362-12370.	1.7	91
16	Photophysical Studies on the Noncovalent Interaction of Thioflavin T with Cucurbit[<i>n</i>)uril Macrocycles. Journal of Physical Chemistry B, 2009, 113, 1891-1898.	1.2	89
17	Contrasting guest binding interaction of cucurbit[7-8]urils with neutral red dye: controlled exchange of multiple guests. Physical Chemistry Chemical Physics, 2010, 12, 7050.	1.3	84
18	Stimulus-Responsive Supramolecular p <i>K</i> _a Tuning of Cucurbit[7]uril Encapsulated Coumarin 6 Dye. Journal of Physical Chemistry B, 2012, 116, 3683-3689.	1.2	78

#	Article	IF	CITATIONS
19	Contrasting Solvent Polarity Effect on the Photophysical Properties of Two Newly Synthesized Aminostyryl Dyes in the Lower and in the Higher Solvent Polarity Regions. Journal of Physical Chemistry A, 2010, 114, 4507-4519.	1.1	74
20	Inhibition and disintegration of insulin amyloid fibrils: a facile supramolecular strategy with p-sulfonatocalixarenes. Chemical Communications, 2016, 52, 2992-2995.	2.2	69
21	Recognition-Mediated Light-Up of Thiazole Orange with Cucurbit[8]uril: Exchange and Release by Chemical Stimuli. Journal of Physical Chemistry B, 2012, 116, 130-135.	1.2	66
22	Molecular Encapsulation of Fluorescent Dyes Affords Efficient Narrowâ€band Dye Laser Operation in Water. ChemPhysChem, 2010, 11, 3333-3338.	1.0	63
23	Synergistic Effect of Intramolecular Charge Transfer toward Supramolecular p <i>K</i> _a Shift in Cucurbit[7]uril Encapsulated Coumarin Dyes. Journal of Physical Chemistry B, 2014, 118, 7136-7146.	1.2	58
24	Non-covalent interactions of coumarin dyes with cucurbit[7]uril macrocycle: modulation of ICT to TICT state conversion. Organic and Biomolecular Chemistry, 2012, 10, 5055.	1.5	50
25	Detection, inhibition and disintegration of amyloid fibrils: the role of optical probes and macrocyclic receptors. Chemical Communications, 2017, 53, 2789-2809.	2.2	49
26	Stimuliâ€Responsive Cucurbit[7]urilâ€Mediated BSA Nanoassembly for Uptake and Release of Doxorubicin. Chemistry - an Asian Journal, 2017, 12, 122-129.	1.7	49
27	A Supramolecular Approach for Enhanced Antibacterial Activity and Extended Shelf-life of Fluoroquinolone Drugs with Cucurbit[7]uril. Scientific Reports, 2018, 8, 13925.	1.6	48
28	Supramolecular Assemblies of Thioflavin T with Cucurbiturils: Prospects of Cooperative and Competitive Metal Ion Binding. Israel Journal of Chemistry, 2011, 51, 634-645.	1.0	47
29	Stimuli-responsive supramolecular micellar assemblies of cetylpyridinium chloride with cucurbit[5/7]urils. Soft Matter, 2014, 10, 3485.	1.2	45
30	Supramolecular assembly of hoechst-33258 with cucurbit[7]uril macrocycle. Physical Chemistry Chemical Physics, 2011, 13, 13117.	1.3	44
31	Early detection of insulin fibrillation: a fluorescence lifetime assay to probe the pre-fibrillar regime. Chemical Communications, 2012, 48, 2403.	2.2	44
32	Triple Emission from <i>p</i> à€Dimethylaminobenzonitrile–Cucurbit[8]uril Triggers the Elusive Excimer Emission. Chemistry - A European Journal, 2015, 21, 691-696.	1.7	44
33	Surfactant-Induced Aggregation Patterns of Thiazole Orange: A Photophysical Study. Langmuir, 2011, 27, 12312-12321.	1.6	40
34	Supramolecular Host–Guest Interactions of Oxazine-1 Dye with β- and γ-Cyclodextrins: A Photophysical and Quantum Chemical Study. Journal of Physical Chemistry B, 2012, 116, 12450-12459.	1.2	40
35	Supramolecular Nanorods of (N-Methylpyridyl) Porphyrin With Captisol: Effective Photosensitizer for Anti-bacterial and Anti-tumor Activities. Frontiers in Chemistry, 2019, 7, 452.	1.8	38
36	Photophysical Properties of 2,2′- and 4,4′-Biphenyldiols. Bulletin of the Chemical Society of Japan, 1999, 72, 2193-2202.	2.0	35

#	Article	IF	CITATIONS
37	Cucurbit[8]uril-templated H and J dimers of bichromophoric coumarin dyes: origin of contrasting emission. Chemical Communications, 2015, 51, 13225-13228.	2.2	35
38	Photophysical and Quantum Chemical Studies on the Interactions of Oxazine-1 Dye with Cucurbituril Macrocycles. Journal of Physical Chemistry B, 2015, 119, 3046-3057.	1.2	34
39	Inhibiting Intramolecular Electron Transfer in Flavin Adenine Dinucleotide by Hostâ°Guest Interaction: A Fluorescence Study. Journal of Physical Chemistry B, 2010, 114, 2617-2626.	1.2	33
40	Effect of donor orientation on ultrafast intermolecular electron transfer in coumarin-amine systems. Journal of Chemical Physics, 2008, 129, 114504.	1.2	32
41	A Fluorescence Perspective on the Differential Interaction of Riboflavin and Flavin Adenine Dinucleotide with Cucurbit[7]uril. Journal of Physical Chemistry B, 2010, 114, 10717-10727.	1.2	31
42	Surface functionalized silver nanoparticle conjugates: demonstration of uptake and release of a phototherapeutic porphyrin dye. Chemical Communications, 2011, 47, 9182.	2.2	31
43	Recognition-mediated cucurbit[7]uril-heptamolybdate hybrid material: a facile supramolecular strategy for ^{99m} Tc separation. Chemical Communications, 2016, 52, 7306-7309.	2.2	31
44	pH and temperature dependent relaxation dynamics of Hoechst-33258: a time resolved fluorescence study. Photochemical and Photobiological Sciences, 2011, 10, 35-41.	1.6	29
45	Metal-Ion-Mediated Assemblies of Thiazole Orange with Cucurbit[7]uril: A Photophysical Study. Journal of Physical Chemistry B, 2015, 119, 3815-3823.	1.2	29
46	Tuning dual emission behavior of p-dialkylaminobenzonitriles by supramolecular interactions with cyclodextrin hosts. Photochemical and Photobiological Sciences, 2008, 7, 979-985.	1.6	28
47	Cucurbituril-Induced Supramolecular pK a Shift in Fluorescent Dyes and Its Prospective Applications. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 1-17.	0.8	27
48	Molecularâ€Recognitionâ€Assisted p <i>K</i> _a Shifts and Metalâ€Ionâ€Induced Fluorescence Regeneration in <i>p</i> à€Sulfonatocalix[6]areneâ€Encapsulated Acridine. ChemPhysChem, 2015, 16, 420-427.	1.0	24
49	Sulfobutylether-Î ² -Cyclodextrin for Inhibition and Rupture of Amyloid Fibrils. Journal of Physical Chemistry C, 2017, 121, 20057-20065.	1.5	23
50	Cucurbituril-Based Supramolecular Assemblies: Prospective on Drug Delivery, Sensing, Separation, and Catalytic Applications. Langmuir, 2022, 38, 6249-6264.	1.6	23
51	The Contrasting Recognition Behavior of βâ€Cyclodextrin and Its Sulfobutylether Derivative towards 4′,6â€Diamidinoâ€2â€phenylindole. ChemPhysChem, 2015, 16, 3425-3432.	1.0	22
52	Modulation in the acidity constant of acridine dye with cucurbiturils: stimuli-responsive pK _a tuning and dye relocation into live cells. Organic and Biomolecular Chemistry, 2017, 15, 8448-8457.	1.5	22
53	New Insights into the Mechanism of Triplet Radical-Pair Combinations. The Persistent Radical Effect Masks the Distinction between In-Cage and Out-of-Cage Processes. Journal of the American Chemical Society, 2007, 129, 5012-5022.	6.6	20
54	A Viologen–Perylenediimide Conjugate as an Efficient Base Sensor with Solvatochromic Property. ChemPhysChem, 2017, 18, 245-252.	1.0	20

#	Article	IF	CITATIONS
55	pH-Mediated Stoichiometric Switching of Cucurbit[8]uril–Hoechst-33258 Complexes. Journal of Physical Chemistry B, 2013, 117, 13595-13603.	1.2	19
56	Cooperative enhancement of antibacterial activity of sanguinarine drug through p-sulfonatocalix[6]arene functionalized silver nanoparticles. Chemical Communications, 2019, 55, 14275-14278.	2.2	19
57	Metal-Free Supramolecular Catalytic Hydrolysis of Ammonia Borane through Cucurbituril Nanocavitands. ACS Applied Materials & Amp; Interfaces, 2021, 13, 16218-16226.	4.0	19
58	Supramolecular Assembly Induced Emission of Thiazole Orange with Sulfobutylether βâ€cyclodextrin: A Stimuliâ€Responsive Fluorescence Sensor for Tyramine. ChemPhysChem, 2019, 20, 2498-2505.	1.0	18
59	Excited singlet (S1) state interactions of 2,2′- and 4,4′-biphenyldiols with chloroalkanes: Photoinduced dissociative electron transfer. Journal of Chemical Physics, 2002, 116, 8006-8014.	1.2	14
60	Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism. Journal of Chemical Physics, 2002, 117, 10744-10751.	1.2	14
61	Metal ion-induced supramolecular pK _a tuning and fluorescence regeneration of a p-sulfonatocalixarene encapsulated neutral red dye. Organic and Biomolecular Chemistry, 2017, 15, 3975-3984.	1.5	14
62	Ultraâ€Bright Rhodamines with Sulfobutyletherâ€Î²â€Cyclodextrin: A Viable Supramolecular Dye Laser in Aqueous Medium. ChemPhysChem, 2018, 19, 2349-2356.	1.0	14
63	Molecular wire formation from poly[2,7-(9,9-dioctylfluorene)-alt-(5,5′-bithiophene/cucurbit[7]uril)] polyrotaxane copolymer. European Polymer Journal, 2015, 62, 124-129.	2.6	13
64	Selective prototropism of lumichrome in cationic micelles and reverse micelles: a photophysical perspective. RSC Advances, 2016, 6, 6111-6124.	1.7	13
65	Redoxâ€mediated Negative Differential Resistance (NDR) Behavior in Perylenediimide Derivative: A Supramolecular Approach. Chemistry - A European Journal, 2019, 25, 13939-13944.	1.7	13
66	Fluorescence enhancement of cationic styrylcoumarin-cucurbit[7]uril complexes: Enhanced stability and cellular membrane localization. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112062.	2.0	12
67	Interaction of meso-tetrakis(N-methylpyridinyl)porphyrin with single strand DNAs – poly(dA), poly(dT), poly(dG) and poly(dC): A photophysical study. Journal of Chemical Sciences, 2014, 126, 911-917.	0.7	11
68	Cyclodextrin-assisted modulation of the photophysical properties and acidity constant of pyrene-armed calix[4] arene. Physical Chemistry Chemical Physics, 2017, 19, 21382-21389.	1.3	10
69	pH-responsive molecular assemblies of pyridylbutadiene derivative with cucurbit[7]uril. RSC Advances, 2018, 8, 16738-16745.	1.7	10
70	Pulsed laser excitation of phosphate stabilised silver nanoparticles. Journal of Chemical Sciences, 2000, 112, 63-72.	0.7	9
71	Reversible Insulin Hexamer Assembly Promoted by Ethyl Violet: pH-Controlled Uptake and Release. Journal of Physical Chemistry Letters, 2016, 7, 3978-3983.	2.1	9
72	Photoinduced dissociative electron transfer (DET) interactions in methoxycalixarene–chloroalkane systems. Chemical Physics Letters, 2003, 370, 641-646.	1.2	8

#	Article	IF	CITATIONS
73	Collective proton motion in the intramolecular hydrogen bonding network and the consequent enhancement in the acidity of hydroxycalixarenes. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 195, 116-126.	2.0	8
74	Recognition-mediated contrasting fluorescence behaviour of 4′,6-diamidino-2-phenylindole (DAPI): probing the p <i>K</i> _a of <i>p</i> <sulfonatocalix[4 2016,="" 28,="" 517-525.<="" 6]arenes.="" chemistry,="" supramolecular="" td=""><td>1.5</td><td>8</td></sulfonatocalix[4>	1.5	8
75	DNA-Induced Novel Optical Features of Ethyl Viologen-Tethered Perylenediimide Triad. Journal of Physical Chemistry C, 2018, 122, 18061-18069.	1.5	8
76	Supramolecular interaction of sanguinarine dye with sulfobutylether-β-cyclodextrin: modulation of the photophysical properties and antibacterial activity. RSC Advances, 2020, 10, 25370-25378.	1.7	8
77	Triplet-State Characteristics and Photoionization Behavior of 2,2â€~- and 4,4â€~-Biphenyldiol Studied by 248 nm Laser Flash Photolysis in Aqueous Solutionsâ€. Journal of Physical Chemistry A, 2002, 106, 2112-2121.	1.1	6
78	Fluorescent probes for the stabilization and detection of G-quadruplexes and their prospective applications. Journal of the Indian Chemical Society, 2021, 98, 100078.	1.3	6
79	Stimuliâ€responsive Supraâ€biomolecular Nanoassemblies of Cucurbit[7]uril with Bovine Serum Albumin: Drug Delivery and Sensor Applications. Israel Journal of Chemistry, 2018, 58, 276-285.	1.0	5
80	Fibril-induced neurodegenerative disorders in an $\hat{Al^2}$ -mutant Drosophila model: therapeutic targeting using ammonium molybdate. Chemical Communications, 2021, 57, 8488-8491.	2.2	5
81	Photoinduced emissive naphthalenediimide radical anion in the confinement of cucurbituril nanocavity; in situ generation of gold nanoparticles. Journal of Molecular Liquids, 2021, 334, 116023.	2.3	5
82	Ground and Excited Singlet (S1) State Interactions of $2,2\hat{a}\in^2$ - and $4,4\hat{a}\in^2$ -Biphenyldiols with Proton Acceptors. Bulletin of the Chemical Society of Japan, 2001, 74, 427-433.	2.0	4
83	Triplet state characteristics of 2,2′- and 4,4′-biphenyldiols studied by 248 nm nanosecond laser flash photolysis. Chemical Physics Letters, 2001, 342, 328-336.	1.2	4
84	Modulation of Protolytic Equilibrium of Bichromophoric Coumarinâ€30 Dye with Cucurbit[8]uril Encapsulation. ChemistrySelect, 2017, 2, 7387-7393.	0.7	4
85	Excited Singlet (S1)-state Interactions of Nile Red with Aromatic Amines¶. Photochemistry and Photobiology, 2003, 78, 153.	1.3	4
86	Chapter 11. Cucurbituril-functionalized Supramolecular Assemblies: Gateways to Diverse Applications. RSC Smart Materials, 2019, , 235-257.	0.1	3
87	Photoinduced electron transfer in host-guest interactions of lumichrome with p-sulfonatocalix[6]arene. Journal of Molecular Liquids, 2021, 322, 114955.	2.3	2
88	Photodissociation and photoionization mechanisms of 2,2'- and 4,4'-biphenyldiols: a laser flash photolysis study. Research on Chemical Intermediates, 2005, 31, 47-61.	1.3	1
89	Excited Singlet (S1)-state Interactions of Nile Red with Aromatic Amines¶. Photochemistry and Photobiology, 2003, 78, 153-158.	1.3	0
90	Editorial: Frontiers in Chemistry-Rising Stars: Asia. Frontiers in Chemistry, 2021, 9, 811459.	1.8	0