Shijian Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3361685/publications.pdf

Version: 2024-02-01

		777949	651938
28	748	13	25
papers	citations	h-index	g-index
32	32	32	1491
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Analysis of Glycosylation and Disulfide Bonding of Wild-Type SARS-CoV-2 Spike Glycoprotein. Journal of Virology, 2022, 96, JVI0162621.	1.5	24
2	Structural basis and mode of action for two broadly neutralizing antibodies against SARS-CoV-2 emerging variants of concern. Cell Reports, 2022, 38, 110210.	2.9	96
3	Functional and Highly Cross-Linkable HIV-1 Envelope Glycoproteins Enriched in a Pretriggered Conformation. Journal of Virology, 2022, 96, e0166821.	1.5	13
4	Dual Pathways of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trafficking Modulate the Selective Exclusion of Uncleaved Oligomers from Virions. Journal of Virology, 2021, 95, .	1.5	26
5	Spike Glycoprotein and Host Cell Determinants of SARS-CoV-2 Entry and Cytopathic Effects. Journal of Virology, 2021, 95, .	1.5	70
6	The opportunity cost of automated glycopeptide analysis: case study profiling the SARS-CoV-2 S glycoprotein. Analytical and Bioanalytical Chemistry, 2021, 413, 7215-7227.	1.9	6
7	Asymmetric Structures and Conformational Plasticity of the Uncleaved Full-Length Human Immunodeficiency Virus Envelope Glycoprotein Trimer. Journal of Virology, 2021, 95, e0052921.	1.5	20
8	Functional differences among the spike glycoproteins of multiple emerging severe acute respiratory syndrome coronavirus 2 variants of concern. IScience, 2021, 24, 103393.	1.9	17
9	Long-Acting BMS-378806 Analogues Stabilize the State-1 Conformation of the Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2020, 94, .	1.5	27
10	Strain-Dependent Activation and Inhibition of Human Immunodeficiency Virus Entry by a Specific PF-68742 Stereoisomer. Journal of Virology, 2019, 93, .	1.5	1
11	Frontispiz: Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, .	1.6	О
12	Frontispiece: Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, .	7.2	O
13	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, 2094-2098.	1.6	11
14	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2072-2076.	7.2	36
15	Glycosylation Benchmark Profile for HIV-1 Envelope Glycoprotein Production Based on Eleven Env Trimers. Journal of Virology, 2017, 91, .	1.5	73
16	Antigenic characterization of the human immunodeficiency virus (HIV-1) envelope glycoprotein precursor incorporated into nanodiscs. PLoS ONE, 2017, 12, e0170672.	1.1	10
17	Efficient human immunodeficiency virus (HIV-1) infection of cells lacking PDZD8. Virology, 2015, 481, 73-78.	1.1	22
18	Comparative Analysis of the Glycosylation Profiles of Membrane-Anchored HIV-1 Envelope Glycoprotein Trimers and Soluble gp140. Journal of Virology, 2015, 89, 8245-8257.	1.5	99

#	Article	IF	CITATIONS
19	Fluorescent primer-based in vitro transcription system of viral RNA-dependent RNA polymerases. Analytical Biochemistry, 2013, 433, 92-94.	1.1	1
20	Identification and Characterization of Multiple TRIM Proteins That Inhibit Hepatitis B Virus Transcription. PLoS ONE, 2013, 8, e70001.	1.1	45
21	Two mutations in the C-terminal domain of influenza virus RNA polymerase PB2 enhance transcription by enhancing cap-1 RNA binding activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 78-83.	0.9	9
22	PA from an H5N1 highly pathogenic avian influenza virus activates viral transcription and replication and induces apoptosis and interferon expression at an early stage of infection. Virology Journal, 2012, 9, 106.	1.4	9
23	Molecular mechanisms of transcription and replication of the influenza A virus genome. Frontiers in Biology, 2011, 6, 446-461.	0.7	2
24	Inhibition of Influenza Virus Replication by Constrained Peptides Targeting Nucleoprotein. Antiviral Chemistry and Chemotherapy, 2011, 22, 119-130.	0.3	13
25	Influenza virus genome C4 promoter/origin attenuates its transcription and replication activity by the low polymerase recognition activity. Virology, 2010, 408, 190-196.	1.1	10
26	Internal Initiation of Influenza Virus Replication of Viral RNA and Complementary RNA in Vitro. Journal of Biological Chemistry, 2010, 285, 41194-41201.	1.6	22
27	Biochemical and kinetic analysis of the influenza virus RNA polymerase purified from insect cells. Biochemical and Biophysical Research Communications, 2010, 391, 570-574.	1.0	20
28	The Hsp40 family chaperone protein DnaJB6 enhances Schlafen1 nuclear localization which is critical for promotion of cell-cycle arrest in T-cells. Biochemical Journal, 2008, 413, 239-250.	1.7	45