Abigail L Mackey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3361588/publications.pdf

Version: 2024-02-01

80 papers

3,775 citations

33 h-index 59 g-index

82 all docs 82 docs citations

times ranked

82

4820 citing authors

#	Article	IF	Citations
1	The proteomic profile of the human myotendinous junction. IScience, 2022, 25, 103836.	1.9	13
2	Preserved stem cell content and innervation profile of elderly human skeletal muscle with lifelong recreational exercise. Journal of Physiology, 2022, 600, 1969-1989.	1.3	15
3	Nestin and osteocrin mRNA increases in human semitendinosus myotendinous junction 7Âdays after a single bout of eccentric exercise. Histochemistry and Cell Biology, 2022, , 1.	0.8	1
4	Human skeletal muscle acetylcholine receptor gene expression in elderly males performing heavy resistance exercise. American Journal of Physiology - Cell Physiology, 2022, 323, C159-C169.	2.1	4
5	Collagens in primary frozen shoulder: expression of collagen mRNA isoforms in the different phases of the disease. Rheumatology, 2021, 60, 3879-3887.	0.9	5
6	Adipocytes are present at human and murine myotendinous junctions. Translational Sports Medicine, 2021, 4, 223-230.	0.5	3
7	No demonstrable ultrastructural adaptation of the human myotendinous junction to immobilization or 4 weeks of heavy resistance training. Translational Sports Medicine, 2021, 4, 431.	0.5	1
8	Resting in bed – how quickly does the muscle lose its nerve?. Journal of Physiology, 2021, 599, 2995-2996.	1.3	2
9	Cardiorespiratory fitness and physical performance after childhood hematopoietic stem cell transplantation: a systematic review and meta-analysis. Bone Marrow Transplantation, 2021, 56, 2063-2078.	1.3	10
10	A biomarker perspective on the acute effect of exercise with and without impact on joint tissue turnover: an exploratory randomized cross-over study. European Journal of Applied Physiology, 2021, 121, 2799-2809.	1.2	10
11	Does moderate intensity impact exercise and non-impact exercise induce acute changes in collagen biochemical markers related to osteoarthritis? – An exploratory randomized cross-over trial. Osteoarthritis and Cartilage, 2021, 29, 986-994.	0.6	14
12	Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging. American Journal of Physiology - Cell Physiology, 2021, 321, C317-C329.	2.1	29
13	RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans. American Journal of Physiology - Cell Physiology, 2021, 321, C453-C470.	2.1	6
14	Mutual stimulatory signaling between human myogenic cells and rat cerebellar neurons. Physiological Reports, 2021, 9, e15077.	0.7	2
15	Neuromuscular Electrical Stimulation Preserves Leg Lean Mass in Geriatric Patients. Medicine and Science in Sports and Exercise, 2020, 52, 773-784.	0.2	14
16	Proteomics identifies differences in fibrotic potential of extracellular vesicles from human tendon and muscle fibroblasts. Cell Communication and Signaling, 2020, 18, 177.	2.7	13
17	Macrophage Subpopulations and the Acute Inflammatory Response of Elderly Human Skeletal Muscle to Physiological Resistance Exercise. Frontiers in Physiology, 2020, 11, 811.	1.3	26
18	Preserved capacity for satellite cell proliferation, regeneration, and hypertrophy in the skeletal muscle of healthy elderly men. FASEB Journal, 2020, 34, 6418-6436.	0.2	46

#	Article	IF	Citations
19	What is the impact of acute inflammation on muscle performance in geriatric patients?. Experimental Gerontology, 2020, 138, 111008.	1.2	7
20	Evaluation of serum ARGS neoepitope as an osteoarthritis biomarker using a standardized model for exercise-induced cartilage extra cellular matrix turnover. Osteoarthritis and Cartilage Open, 2020, 2, 100060.	0.9	9
21	Impact of low-volume concurrent strength training distribution on muscular adaptation. Journal of Science and Medicine in Sport, 2020, 23, 999-1004.	0.6	5
22	Key Components of Human Myofibre Denervation and Neuromuscular Junction Stability are Modulated by Age and Exercise. Cells, 2020, 9, 893.	1.8	30
23	An anti-inflammatory phenotype in visceral adipose tissue of old lean mice, augmented by exercise. Scientific Reports, 2019, 9, 12069.	1.6	30
24	Molecular indicators of denervation in aging human skeletal muscle. Muscle and Nerve, 2019, 60, 453-463.	1.0	33
25	The influence of direct and indirect fibroblast cell contact on human myogenic cell behavior and gene expression in vitro. Journal of Applied Physiology, 2019, 127, 342-355.	1.2	7
26	Lack of muscle fibre hypertrophy, myonuclear addition, and satellite cell pool expansion with resistance training in 83â€94â€yearâ€old men and women. Acta Physiologica, 2019, 227, e13271.	1.8	36
27	Age and prior exercise in vivo determine the subsequent in vitro molecular profile of myoblasts and nonmyogenic cells derived from human skeletal muscle. American Journal of Physiology - Cell Physiology, 2019, 316, C898-C912.	2.1	18
28	The influence of fibrillinâ€1 and physical activity upon tendon tissue morphology and mechanical properties in mice. Physiological Reports, 2019, 7, e14267.	0.7	9
29	Integrated method for quantitative morphometry and oxygen transport modeling in striated muscle. Journal of Applied Physiology, 2019, 126, 544-557.	1.2	29
30	Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E715-E724.	3.3	88
31	Effect of Losartan on the Acute Response of Human Elderly Skeletal Muscle to Exercise. Medicine and Science in Sports and Exercise, 2018, 50, 225-235.	0.2	11
32	Losartan has no additive effect on the response to heavy-resistance exercise in human elderly skeletal muscle. Journal of Applied Physiology, 2018, 125, 1536-1554.	1.2	16
33	Skeletal muscle morphology and regulatory signalling in endurance-trained and sedentary individuals: The influence of ageing. Experimental Gerontology, 2017, 93, 54-67.	1.2	34
34	Human skeletal muscle fibroblasts stimulate <i>in vitro</i> myogenesis and <i>in vivo</i> muscle regeneration. Journal of Physiology, 2017, 595, 5115-5127.	1.3	79
35	Skeletal muscle morphology, protein synthesis, and gene expression in Ehlers-Danlos syndrome. Journal of Applied Physiology, 2017, 123, 482-488.	1.2	4
36	Improved skeletal muscle mass and strength after heavy strength training in very old individuals. Experimental Gerontology, 2017, 92, 96-105.	1.2	37

#	Article	IF	Citations
37	Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scandinavian Journal of Medicine and Science in Sports, 2017, 27, 1547-1559.	1.3	48
38	Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury. Journal of Applied Physiology, 2017, 122, 533-540.	1.2	40
39	The breaking and making of healthy adult human skeletal muscle in vivo. Skeletal Muscle, 2017, 7, 24.	1.9	85
40	Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal antiâ€inflammatory medication. FASEB Journal, 2016, 30, 2266-2281.	0.2	72
41	Muscle satellite cell content and mRNA signaling in germ cell cancer patients $\hat{a} \in \text{``effects of chemotherapy and resistance training. Acta Oncológica, 2016, 55, 1246-1250.}$	0.8	8
42	Matters of fiber size and myonuclear domain: Does size matter more than age?. Muscle and Nerve, 2015, 52, 1040-1046.	1.0	24
43	Fiber typeâ€specific response of skeletal muscle satellite cells to highâ€intensity resistance training in dialysis patients. Muscle and Nerve, 2015, 52, 736-745.	1.0	14
44	The human myotendinous junction: An ultrastructural and $3 < scp > D < / scp > analysis study.$ Scandinavian Journal of Medicine and Science in Sports, 2015, 25, e116-23.	1.3	49
45	Differential satellite cell density of type <scp>I</scp> and <scp>II</scp> fibres with lifelong endurance running in old men. Acta Physiologica, 2014, 210, 612-627.	1.8	47
46	Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids, 2014, 46, 2503-2516.	1.2	58
47	Life-long endurance exercise in humans: Circulating levels of inflammatory markers and leg muscle size. Mechanisms of Ageing and Development, 2013, 134, 531-540.	2.2	94
48	Morphological adaptation of muscle collagen and receptor of advanced glycation end product (RAGE) in osteoarthritis patients with 12Aweeks of resistance training: influence of anti-inflammatory or glucosamine treatment. Rheumatology International, 2013, 33, 2215-2224.	1.5	14
49	Differentially Activated Macrophages Orchestrate Myogenic Precursor Cell Fate During Human Skeletal Muscle Regeneration. Stem Cells, 2013, 31, 384-396.	1.4	343
50	Ageing is associated with diminished muscle reâ€growth and myogenic precursor cell expansion early after immobilityâ€induced atrophy in human skeletal muscle. Journal of Physiology, 2013, 591, 3789-3804.	1.3	132
51	The expression of heat shock protein in human skeletal muscle: effects of muscle fibre phenotype and training background. Acta Physiologica, 2013, 209, 26-33.	1.8	23
52	Does an NSAID a day keep satellite cells at bay?. Journal of Applied Physiology, 2013, 115, 900-908.	1.2	20
53	Automated image segmentation of haematoxylin and eosin stained skeletal muscle crossâ€sections. Journal of Microscopy, 2013, 252, 275-285.	0.8	29
54	<scp>GH/IGFâ€I</scp> axis and matrix adaptation of the musculotendinous tissue to exercise in humans. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, e1-7.	1.3	28

#	Article	IF	Citations
55	Rehabilitation of muscle after injury – the role of antiâ€inflammatory drugs. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, e8-14.	1.3	37
56	Nonsteroidal Anti-Inflammatory Drug or Glucosamine Reduced Pain and Improved Muscle Strength With Resistance Training in a Randomized Controlled Trial of Knee Osteoarthritis Patients. Archives of Physical Medicine and Rehabilitation, 2011, 92, 1185-1193.	0.5	81
57	Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 773-782.	1.3	49
58	Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scandinavian Journal of Medicine and Science in Sports, 2011, 21, 749-757.	1.3	179
59	Strength training increases the size of the satellite cell pool in type I and II fibres of chronically painful trapezius muscle in females. Journal of Physiology, 2011, 589, 5503-5515.	1.3	36
60	Progressive Resistance Training and Cancer Testis (PROTRACT) - Efficacy of resistance training on muscle function, morphology and inflammatory profile in testicular cancer patients undergoing chemotherapy: design of a randomized controlled trial. BMC Cancer, 2011, 11, 326.	1.1	19
61	Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle. FASEB Journal, 2011, 25, 1943-1959.	0.2	140
62	Distribution of myogenic progenitor cells and myonuclei is altered in women with vs. those without chronically painful trapezius muscle. Journal of Applied Physiology, 2010, 109, 1920-1929.	1.2	34
63	Increased Cellular Proliferation in Rat Skeletal Muscle and Tendon in Response to Exercise: Use of FLT and PET/CT. Molecular Imaging and Biology, 2010, 12, 626-634.	1.3	9
64	Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. Journal of Physiology, 2010, 588, 341-351.	1.3	160
65	Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise. Journal of Applied Physiology, 2009, 107, 1600-1611.	1.2	156
66	Molecular aging and rejuvenation of human muscle stem cells. EMBO Molecular Medicine, 2009, 1, 381-391.	3.3	204
67	Assessment of satellite cell number and activity status in human skeletal muscle biopsies. Muscle and Nerve, 2009, 40, 455-465.	1.0	135
68	Immunohistochemical changes in the expression of HSP27 in exercised human vastus lateralis muscle. Acta Physiologica, 2008, 194, 215-222.	1.8	23
69	Novel methods for tendon investigations. Disability and Rehabilitation, 2008, 30, 1514-1522.	0.9	11
70	Dynamic Adaptation of Tendon and Muscle Connective Tissue to Mechanical Loading. Connective Tissue Research, 2008, 49, 165-168.	1.1	59
71	Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women. Journal of Applied Physiology, 2008, 105, 274-281.	1.2	101
72	Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans. Journal of Applied Physiology, 2008, 105, 1620-1627.	1.2	71

#	ARTICLE	IF	CITATION
73	The Effects of Regular Strength Training on Telomere Length in Human Skeletal Muscle. Medicine and Science in Sports and Exercise, 2008, 40, 82-87.	0.2	51
74	Increased myogenic precursor cell number in human skeletal muscle with 12 weeks of training at low intensity. FASEB Journal, 2008, 22, 753.25.	0.2	0
75	The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. Journal of Applied Physiology, 2007, 103, 425-431.	1.2	153
76	Use of antiâ€inflammatory medication in healthy athletes – no pain, no gain?. Scandinavian Journal of Medicine and Science in Sports, 2007, 17, 613-614.	1.3	19
77	The effects of impact and non-impact exercise on circulating markers of collagen remodelling in humans. Journal of Sports Sciences, 2006, 24, 843-848.	1.0	12
78	Enhanced satellite cell proliferation with resistance training in elderly men and women. Scandinavian Journal of Medicine and Science in Sports, 2006, 17, 061120070736047-???.	1.3	112
79	Muscle connective tissue content of endurance-trained and inactive individuals. Scandinavian Journal of Medicine and Science in Sports, 2005, 15, 402-408.	1.3	17
80	Skeletal muscle collagen content in humans after high-force eccentric contractions. Journal of Applied Physiology, 2004, 97, 197-203.	1.2	82