Atsushi Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pacemaker translocations and power laws in 2D stem cell-derived cardiomyocyte cultures. PLoS ONE, 2022, 17, e0263976.	2.5	2
2	Cardio PyMEA: A user-friendly, open-source Python application for cardiomyocyte microelectrode array analysis. PLoS ONE, 2022, 17, e0266647.	2.5	1
3	GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Scientific Reports, 2021, 11, 8669.	3.3	25
4	The role of glucose in physiological and pathological heart formation. Developmental Biology, 2021, 475, 222-233.	2.0	11
5	Recessive ciliopathy mutations in primary endocardial fibroelastosis: a rare neonatal cardiomyopathy in a case of Alstrom syndrome. Journal of Molecular Medicine, 2021, 99, 1623-1638.	3.9	4
6	GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14522-14531.	7.1	17
7	Endocardially Derived Macrophages Are Essential for Valvular Remodeling. Developmental Cell, 2019, 48, 617-630.e3.	7.0	61
8	Expression and relevance of the G protein-gated K+ channel in the mouse ventricle. Scientific Reports, 2018, 8, 1192.	3.3	19
9	TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency. Stem Cell Reports, 2018, 10, 243-256.	4.8	23
10	Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Frontiers in Physiology, 2018, 9, 943.	2.8	25
11	Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Scientific Reports, 2017, 7, 43210.	3.3	35
12	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	3.3	41
13	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	6.0	142
14	Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Scientific Reports, 2016, 6, 30736.	3.3	38
15	Heterozygous deletion of sarcolipin maintains normal cardiac function. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H92-H103.	3.2	8
16	The developmental origins and lineage contributions of endocardial endothelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1937-1947.	4.1	29
17	A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell Stem Cell, 2016, 18, 533-540.	11.1	307
18	Hematopoietic progenitors are required for proper development of coronary vasculature. Journal of Molecular and Cellular Cardiology, 2015, 86, 199-207.	1.9	15

Atsushi Nakano

#	Article	IF	CITATIONS
19	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
20	Mitochondrial Ca2+ uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. ELife, 2015, 4, .	6.0	67
21	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	4.5	0
22	Nkx2-5 Suppresses the Proliferation of Atrial Myocytes and Conduction System. Circulation Research, 2014, 114, 1103-1113.	4.5	50
23	Haemogenic endocardium contributes to transient definitive haematopoiesis. Nature Communications, 2013, 4, 1564.	12.8	119
24	Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Science and Technology of Advanced Materials, 2013, 14, 025003.	6.1	60
25	Nkx2â€5 lineage tracing visualizes the distribution of second heart fieldâ€derived aortic smooth muscle. Genesis, 2013, 51, 862-869.	1.6	45
26	Cardiac origin of smooth muscle cells in the inflow tract. Journal of Molecular and Cellular Cardiology, 2011, 50, 337-345.	1.9	21
27	Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification. Cell, 2006, 127, 1151-1165.	28.9	944