Atsushi Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/336131/publications.pdf

Version: 2024-02-01

27 papers

2,159 citations

471509 17 h-index 9-index

31 all docs

31 docs citations

31 times ranked

3660 citing authors

#	Article	IF	Citations
1	Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification. Cell, 2006, 127, 1151-1165.	28.9	944
2	A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Cell Stem Cell, 2016, 18, 533-540.	11.1	307
3	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	6.0	142
4	Haemogenic endocardium contributes to transient definitive haematopoiesis. Nature Communications, 2013, 4, 1564.	12.8	119
5	Mitochondrial Ca2+ uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. ELife, 2015, 4, .	6.0	67
6	Endocardially Derived Macrophages Are Essential for Valvular Remodeling. Developmental Cell, 2019, 48, 617-630.e3.	7.0	61
7	Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Science and Technology of Advanced Materials, 2013, 14, 025003.	6.1	60
8	Nkx2-5 Suppresses the Proliferation of Atrial Myocytes and Conduction System. Circulation Research, 2014, 114, 1103-1113.	4. 5	50
9	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	8.5	47
10	Nkx2â€5 lineage tracing visualizes the distribution of second heart fieldâ€derived aortic smooth muscle. Genesis, 2013, 51, 862-869.	1.6	45
11	Light-sheet fluorescence imaging to localize cardiac lineage and protein distribution. Scientific Reports, 2017, 7, 42209.	3.3	41
12	Simplified three-dimensional tissue clearing and incorporation of colorimetric phenotyping. Scientific Reports, 2016, 6, 30736.	3.3	38
13	Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Scientific Reports, 2017, 7, 43210.	3.3	35
14	The developmental origins and lineage contributions of endocardial endothelium. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1937-1947.	4.1	29
15	Atrial GIRK Channels Mediate the Effects of Vagus Nerve Stimulation on Heart Rate Dynamics and Arrhythmogenesis. Frontiers in Physiology, 2018, 9, 943.	2.8	25
16	GLUT1 overexpression enhances glucose metabolism and promotes neonatal heart regeneration. Scientific Reports, 2021, 11, 8669.	3.3	25
17	TRIM28-Regulated Transposon Repression Is Required for Human Germline Competency and Not Primed or Naive Human Pluripotency. Stem Cell Reports, 2018, 10, 243-256.	4.8	23
18	Cardiac origin of smooth muscle cells in the inflow tract. Journal of Molecular and Cellular Cardiology, 2011, 50, 337-345.	1.9	21

#	Article	IF	Citations
19	Expression and relevance of the G protein-gated K+ channel in the mouse ventricle. Scientific Reports, 2018, 8, 1192.	3.3	19
20	GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14522-14531.	7.1	17
21	Hematopoietic progenitors are required for proper development of coronary vasculature. Journal of Molecular and Cellular Cardiology, 2015, 86, 199-207.	1.9	15
22	The role of glucose in physiological and pathological heart formation. Developmental Biology, 2021, 475, 222-233.	2.0	11
23	Heterozygous deletion of sarcolipin maintains normal cardiac function. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H92-H103.	3.2	8
24	Recessive ciliopathy mutations in primary endocardial fibroelastosis: a rare neonatal cardiomyopathy in a case of Alstrom syndrome. Journal of Molecular Medicine, 2021, 99, 1623-1638.	3.9	4
25	Pacemaker translocations and power laws in 2D stem cell-derived cardiomyocyte cultures. PLoS ONE, 2022, 17, e0263976.	2.5	2
26	Cardio PyMEA: A user-friendly, open-source Python application for cardiomyocyte microelectrode array analysis. PLoS ONE, 2022, 17, e0266647.	2.5	1
27	Abstract 15: Global RNA Splicing Regulation in Cardiac Maturation. Circulation Research, 2015, 117, .	4.5	0