Hana Kubova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3361266/publications.pdf

Version: 2024-02-01

201385 197535 3,046 138 27 49 citations h-index g-index papers 142 142 142 2511 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Infantile status epilepticus disrupts myelin development. Neurobiology of Disease, 2022, 162, 105566.	2.1	3
2	Adenosine Kinase Isoforms in the Developing Rat Hippocampus after LiCl/Pilocarpine Status Epilepticus. International Journal of Molecular Sciences, 2022, 23, 2510.	1.8	0
3	Anticonvulsive Effects and Pharmacokinetic Profile of Cannabidiol (CBD) in the Pentylenetetrazol (PTZ) or N-Methyl-D-Aspartate (NMDA) Models of Seizures in Infantile Rats. International Journal of Molecular Sciences, 2022, 23, 94.	1.8	8
4	The Neuroactive Steroid Pregnanolone Glutamate: Anticonvulsant Effect, Metabolites and Its Effect on Neurosteroid Levels in Developing Rat Brains. Pharmaceuticals, 2022, 15, 49.	1.7	6
5	Perampanel exhibits anticonvulsant action against pentylentetrazol-induced seizures in immature rats. Epilepsy Research, 2021, 169, 106523.	0.8	1
6	Effects of Dizocilpine, Midazolam and Their Co-Application on the Trimethyltin (TMT)-Induced Rat Model of Cognitive Deficit. Brain Sciences, 2021, 11, 400.	1.1	2
7	Anticonvulsant Action of GluN2A-Preferring Antagonist PEAQX in Developing Rats. Pharmaceutics, 2021, 13, 415.	2.0	5
8	Dynamic miRNA changes during the process of epileptogenesis in an infantile and adult-onset model. Scientific Reports, 2021, 11, 9649.	1.6	12
9	The GluN2B-Selective Antagonist Ro 25-6981 Is Effective against PTZ-Induced Seizures and Safe for Further Development in Infantile Rats. Pharmaceutics, 2021, 13, 1482.	2.0	7
10	Interaction of GABAA and GABAB antagonists after status epilepticus in immature rats. Epilepsy and Behavior, 2020, 102, 106683.	0.9	3
11	Epilepsy miRNA Profile Depends on the Age of Onset in Humans and Rats. Frontiers in Neuroscience, 2020, 14, 924.	1.4	14
12	Neonatal Clonazepam Administration Induced Long-Lasting Changes in GABAA and GABAB Receptors. International Journal of Molecular Sciences, 2020, 21, 3184.	1.8	4
13	Three neurosteroids as well as GABAergic drugs do not convert immediate postictal potentiation to depression in immature rats. Pharmacological Reports, 2020, 72, 1573-1578.	1.5	1
14	Electrographic seizures induced by activation of ETA and ETB receptors following intrahippocampal infusion of endothelin-1 in immature rats occur by different mechanisms. Experimental Neurology, 2020, 328, 113255.	2.0	1
15	Adenosine A1 Receptor Agonist 2-chloro-N6-cyclopentyladenosine and Hippocampal Excitability During Brain Development in Rats. Frontiers in Pharmacology, 2019, 10, 656.	1.6	6
16	Comorbidities of early-onset temporal epilepsy: Cognitive, social, emotional, and morphologic dimensions. Experimental Neurology, 2019, 320, 113005.	2.0	17
17	Changing effect of GABA B receptor antagonist CGP46381 after status epilepticus in immature rats. Epilepsy Research, 2019, 149, 17-20.	0.8	1
18	Do Stereoisomers of Homocysteic Acid Exhibit Different Convulsant Action in Immature Rats?. Physiological Research, 2019, 68, S361-S366.	0.4	1

#	Article	IF	CITATIONS
19	Effect of Resveratrol on Oxidative Stress and Mitochondrial Dysfunction in Immature Brain during Epileptogenesis. Molecular Neurobiology, 2018, 55, 7512-7522.	1.9	36
20	Does status epilepticus modify the effect of ifenprodil on cortical epileptic afterdischarges in immature rats?. Pharmacological Reports, 2018, 70, 126-132.	1.5	1
21	Neonatal Clonazepam Administration Induces Long-Lasting Changes in Glutamate Receptors. Frontiers in Molecular Neuroscience, 2018, 11, 382.	1.4	11
22	The Free Radical Scavenger N-Tert-Butyl-α-Phenylnitrone (PBN) Administered to Immature Rats During Status Epilepticus Alters Neurogenesis and Has Variable Effects, Both Beneficial and Detrimental, on Long-Term Outcomes. Frontiers in Cellular Neuroscience, 2018, 12, 266.	1.8	6
23	Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits. Frontiers in Pharmacology, 2018, 9, 42.	1.6	31
24	Ontogenetic Development of Sensitivity of the Cerebral Cortex to an Antagonist of GABAA Receptor Bicuculline. Physiological Research, 2018, 67, 149-153.	0.4	0
25	Which component of treatment is important for changes of cortical epileptic afterdischarges after status epilepticus in immature rats?. Neuroscience Letters, 2017, 644, 1-4.	1.0	2
26	Status Epilepticus in Immature Rats Is Associated with Oxidative Stress and Mitochondrial Dysfunction. Frontiers in Cellular Neuroscience, 2016, 10, 136.	1.8	30
27	Does status epilepticus induced at early postnatal period change excitability after cortical epileptic afterdischarges?. Epilepsia, 2016, 57, e183-6.	2.6	3
28	Influence of early life status epilepticus on the developmental expression profile of the GluA2 subunit of AMPA receptors. Experimental Neurology, 2016, 283, 97-109.	2.0	6
29	Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience, 2015, 305, 209-224.	1.1	29
30	Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses. Brain Research, 2015, 1627, 201-215.	1.1	10
31	Activation of either the ETA or the ETB receptors is involved in the development of electrographic seizures following intrahippocampal infusion of the endothelin-1 in immature rats. Experimental Neurology, 2015, 265, 40-47.	2.0	3
32	Ambiguous effects of neuroprotective treatment with free radical scavenger N-tert-butyl-alfa-phenylnitrone (PBN) on outcome of status epilepticus and their mechanisms. Pharmacological Reports, 2015, 67, 5.	1.5	0
33	Developmental patterns of postictal refractoriness and potentiation akin to cortical stimulation. Epilepsia, 2015, 56, e10-4.	2.6	5
34	GABAB, not GABAA receptors play a role in cortical postictal refractoriness. Neuropharmacology, 2015, 88, 99-102.	2.0	8
35	Consequences of early postnatal benzodiazepines exposure in rats. I. Cognitive-like behavior. Frontiers in Behavioral Neuroscience, 2014, 8, 101.	1.0	17
36	Consequences of early postnatal benzodiazepines exposure in rats. II. Social behavior. Frontiers in Behavioral Neuroscience, 2014, 8, 169.	1.0	15

#	Article	IF	CITATIONS
37	Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP. Pharmacological Reports, 2014, 66, 927-930.	1.5	4
38	Early caffeine exposure: Transient and long-term consequences on brain excitability. Brain Research Bulletin, 2014, 104, 27-35.	1.4	17
39	Neuroprotective effect of the $3\hat{l}\pm5\hat{l}^2$ -pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neuroscience Letters, 2014, 564, 11-15.	1.0	23
40	Calretinin immunoreactivity in the claustrum of the rat. Frontiers in Neuroanatomy, 2014, 8, 160.	0.9	16
41	Effects of caffeine on cortical epileptic afterdischarges in adult rats are modulated by postnatal treatment. Acta Neurologica Belgica, 2013, 113, 493-500.	0.5	6
42	Are morphologic and functional consequences of status epilepticus in infant rats progressive?. Neuroscience, 2013, 235, 232-249.	1.1	34
43	Derivatives of valproic acid are active against pentetrazol-induced seizures in immature rats. Epilepsy Research, 2013, 106, 64-73.	0.8	5
44	Different effects of postnatal caffeine treatment on two pentylenetetrazole-induced seizure models persist into adulthood. Pharmacological Reports, 2013, 65, 847-853.	1.5	3
45	E.27 - LICL/PILOCARPINE INDUCED STATUS EPILEPTICUS IN IMMATURE RATS AFFECT BEHAVIORAL RESPONSIVENESS LATTER IN LIFE. Behavioural Pharmacology, 2013, 24, e49.	0.8	0
46	D.5 - MILD PROTECTIVE EFFECT OF $3\hat{1}\pm5\hat{1}^2$ -PREGNANOLONE GLUTAMATE IN THE MODEL OF FOCAL CEREBRAL ISCHEMIA IN IMMATURE RATS. Behavioural Pharmacology, 2013, 24, e38.	0.8	0
47	Corrigendum to "Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats―[Epilepsy Behav. 20 (1) (2011) 12–19]. Epilepsy and Behavior, 2012, 23, 398.	0.9	1
48	New Insight on the Mechanisms of Epileptogenesis in the Developing Brain. Advances and Technical Standards in Neurosurgery, 2012, 39, 3-44.	0.2	20
49	Calretinin, parvalbumin and calbindin immunoreactive interneurons in perirhinal cortex and temporal area Te3V of the rat brain: Qualitative and quantitative analyses. Brain Research, 2012, 1436, 68-80.	1.1	22
50	Effect of Endothelin-1 on the Excitability of Rat Cortical and Hippocampal Slices In Vitro. Physiological Research, 2012, 61, 215-219.	0.4	3
51	Partial Agonist of Benzodiazepine Receptors Ro 19-2088 Elicits Withdrawal Symptoms After Short-Term Administration in Immature Rats. Physiological Research, 2012, 61, 319-323.	0.4	4
52	Rebound increase in seizure susceptibility but not isolation-induced calls after single administration of clonazepam and Ro 19-8022 in infant rats. Epilepsy and Behavior, 2011, 20, 12-19.	0.9	7
53	Stable Anticonvulsant Action of Benzodiazepines During Development in Rats. Journal of Pharmacy and Pharmacology, 2011, 45, 807-810.	1.2	16
54	Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia, 2011, 52, 104-114.	2.6	92

#	Article	IF	CITATIONS
55	Effects of classical antiepileptics on thresholds for phenomena induced by cortical stimulation in rats. Journal of Pharmacy and Pharmacology, 2010, 54, 1011-1015.	1.2	3
56	Time course of neuronal damage in the hippocampus following lithium-pilocarpine status epilepticus in 12-day-old rats. Brain Research, 2010, 1355, 174-179.	1.1	11
57	Postnatal period of caffeine treatment and time of testing modulate the effect of acute caffeine on cortical epileptic afterdischarges in rats. Brain Research, 2010, 1356, 121-129.	1.1	11
58	Effects of early postnatal caffeine exposure on seizure susceptibility of rats are age- and model-dependent. Epilepsy Research, 2010, 88, 231-238.	0.8	15
59	Vigabatrin but not valproate prevents development of ageâ€specific flexion seizures induced by <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate (NMDA) in immature rats. Epilepsia, 2010, 51, 469-472.	2.6	14
60	Metabotropic glutamate receptors as a target for anticonvulsant and anxiolytic action in immature rats. Epilepsia, 2010, 51, 24-26.	2.6	12
61	Effects of 2-chloroadenosine on cortical epileptic afterdischarges in immature rats. Pharmacological Reports, 2010, 62, 62-67.	1.5	10
62	Effects of lamotrigine on cortically-elicited phenomena in adult rats: Differences between acute application and late consequences of early postnatal administration. Brain Research, 2009, 1258, 65-70.	1,1	9
63	Postnatal caffeine treatment affects differently two pentylenetetrazol seizure models in rats. Seizure: the Journal of the British Epilepsy Association, 2009, 18, 463-469.	0.9	21
64	An Animal Model of Nonconvulsive Status Epilepticus: A Contribution to Clinicalâ€∫Controversies. Epilepsia, 2008, 42, 171-180.	2.6	19
65	Changes of cortical epileptic afterdischarges after status epilepticus in immature rats. Epilepsy Research, 2008, 78, 178-185.	0.8	6
66	Intrahippocampal Injection of Endothelin-1: A New Model of Ischemia-induced Seizures in Immature Rats. Epilepsia, 2007, 48, 7-13.	2.6	21
67	Effects of postnatal caffeine exposure on seizure susceptibility in developing rats. Brain Research, 2007, 1150, 32-39.	1.1	21
68	Effects of LiCl/pilocarpine-induced status epilepticus on rat brain mu and benzodiazepine receptor binding: Regional and ontogenetic studies. Brain Research, 2007, 1181, 104-117.	1.1	9
69	Hypoxia-induced changes of seizure susceptibility in immature rats are modified by vigabatrin. Epileptic Disorders, 2007, 9 Suppl 1, S36-43.	0.7	3
70	Effects of a GABA-B receptor agonist baclofen on cortical epileptic afterdischarges in rats. Epileptic Disorders, 2007, 9 Suppl 1, S44-51.	0.7	0
71	Effect of free radical spin trap N-tert-butyl-α-phenylnitrone (PBN) on seizures induced in immature rats by homocysteic acid. Experimental Neurology, 2006, 201, 105-119.	2.0	17
72	Intrahippocampal injection of endothelin-1 in immature rats results in neuronal death, development of epilepsy and behavioral abnormalities later in life. European Journal of Neuroscience, 2006, 24, 351-360.	1.2	28

#	Article	IF	CITATIONS
73	Status Epilepticus in 12-day-old Rats Leads to Temporal Lobe Neurodegeneration and Volume Reduction: A Histologic and MRI Study. Epilepsia, 2006, 47, 479-488.	2.6	74
74	Biphasic effect of chronic postnatal caffeine treatment on cortical epileptic afterdischarges during ontogeny in rats. Brain Research, 2006, 1082, 43-49.	1.1	13
75	Electrical Stimulation-Induced Models of Seizures. , 2006, , 153-159.		20
76	Treatment of Experimental Status Epilepticus in Immature Rats: Dissociation Between Anticonvulsant and Antiepileptogenic Effects. Pediatric Research, 2006, 59, 237-243.	1.1	81
77	Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Research, 2005, 63, 43-65.	0.8	29
78	Changes of Cortical Interhemispheric Responses after Status Epilepticus in Immature Rats. Epilepsia, 2005, 46, 31-37.	2.6	6
79	Outcome of Status Epilepticus in Immature Rats Varies According to the Paraldehyde Treatment. Epilepsia, 2005, 46, 38-42.	2.6	15
80	Changes in Cytochrome Oxidase in the Piriform Cortex after Status Epilepticus in Adult Rats. Epilepsia, 2005, 46, 89-93.	2.6	8
81	Postnatal caffeine exposure: effects on motor skills and locomotor activity during ontogenesis. Behavioural Brain Research, 2005, 160, 99-106.	1.2	41
82	Seizures induced in immature rats by homocysteic acid and the associated brain damage are prevented by group II metabotropic glutamate receptor agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate. Experimental Neurology, 2005, 192, 420-436.	2.0	42
83	Motor performance and behavior of immature rats are not compromised by a high dose of topiramate. Epilepsy and Behavior, 2005, 7, 222-230.	0.9	16
84	Antiepileptic drugs in neuroprotection. Expert Opinion on Pharmacotherapy, 2004, 5, 777-798.	0.9	62
85	Status epilepticus in immature rats leads to behavioural and cognitive impairment and epileptogenesis. European Journal of Neuroscience, 2004, 19, 3255-3265.	1.2	131
86	Long-term behavioral and morphological consequences of nonconvulsive status epilepticus in rats. Epilepsy and Behavior, 2004, 5, 180-191.	0.9	66
87	Lamotrigine does not impair motor performance and spontaneous behavior in developing rats. Epilepsy and Behavior, 2004, 5, 464-471.	0.9	14
88	An Animal Model of Nonconvulsive Status Epilepticus: A Contribution to Clinical Controversies. Epilepsia, 2003, 42, 171-180.	2.6	2
89	Long-term changes of activity of cortical neurons after status epilepticus induced at early developmental stages in rats. Neuroscience Letters, 2003, 352, 125-128.	1.0	4
90	Changes of cortical epileptic afterdischarges under the influence of convulsant drugs. Brain Research Bulletin, 2002, 58, 49-54.	1.4	17

#	Article	IF	Citations
91	Modulation of adenylyl cyclase activity by baclofen in the developing rat brain: difference between cortex, thalamus and hippocampus. Neuroscience Letters, 2002, 330, 9-12.	1.0	9
92	Interaction of Excitatory Amino Acid Agonists with Cortical Afterdischarges in Developing Rats. Epilepsia, 2002, 43, 61-67.	2.6	6
93	Dynamic Changes of Status Epilepticus-Induced Neuronal Degeneration in the Mediodorsal Nucleus of the Thalamus During Postnatal Development of the Rat. Epilepsia, 2002, 43, 54-60.	2.6	31
94	Unequal development of thresholds for various phenomena induced by cortical stimulation in rats. Epilepsy Research, 2002, 49, 35-43.	0.8	43
95	Nonconvulsive Seizures Result in Behavioral but Not Electrophysiological Changes in Developing Rats. Epilepsy and Behavior, 2001, 2, 473-480.	0.9	8
96	Single systemic dose of vigabatrin induces early proconvulsant and later anticonvulsant effect in rats. Neuroscience Letters, 2001, 312, 37-40.	1.0	10
97	Status Epilepticus Causes Necrotic Damage in the Mediodorsal Nucleus of the Thalamus in Immature Rats. Journal of Neuroscience, 2001, 21, 3593-3599.	1.7	156
98	Influence of convulsants on rat brain activities of alanine aminotransferase and aspartate aminotransferase. Neurochemical Research, 2001, 26, 1285-1291.	1.6	17
99	Convulsant action of systemically administered glutamate and bicuculline methiodide in immature rats. Epilepsy Research, 2000, 42, 183-189.	0.8	23
100	Selection of Antiepileptic Drug Polytherapy Based on Mechanisms of Action: The Evidence Reviewed. Epilepsia, 2000, 41, 1364-1374.	2.6	296
101	Two Different Anticonvulsant Actions of Tiagabine in Developing Rats. Epilepsia, 2000, 41, 1375-1381.	2.6	7
102	Does Status Epilepticus Influence the Motor Development of Immature Rats?. Epilepsia, 2000, 41, S64-S69.	2.6	20
103	Anticonvulsant Action of Topiramate Against Motor Seizures in Developing Rats. Epilepsia, 2000, 41, 1235-1240.	2.6	11
104	The benzodiazepine receptor partial agonist Ro 19-8022 suppresses generalized seizures without impairing motor functions in developing rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1999, 360, 565-574.	1.4	10
105	Changes in NADPH-diaphorase positivity induced by status epilepticus in allocortical structures of the immature rat brain. Brain Research Bulletin, 1999, 48, 39-47.	1.4	7
106	NNCâ€₹11: An Inhibitor of GAB A Uptake with Selective Affinity to GATâ€1. CNS Neuroscience & Therapeutics, 1999, 5, 317-330.	4.0	6
107	The expression of GABAA receptor subunits in the substantia nigra is developmentally regulated and region-specific. Italian Journal of Neurological Sciences, 1998, 19, 205-210.	0.1	30
108	Effects of NNC 711, a GABA uptake inhibitor, on pentylenetetrazol-induced seizures in developing and adult rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1998, 358, 334-341.	1.4	11

#	Article	IF	CITATIONS
109	Qualitative changes of anticonvulsant action of felbamate during development in rats. Brain and Development, 1998, 20, 222-226.	0.6	3
110	Non-NMDA receptor antagonist GYKI 52466 suppresses cortical afterdischarges in immature rats. European Journal of Pharmacology, 1997, 333, 17-26.	1.7	14
111	Inhibition of glutamate decarboxylase activity by 3-mercaptopropionic acid has different time course in the immature and adult rat brains. Neuroscience Letters, 1997, 226, 68-70.	1.0	19
112	Convulsant Action of D,L-Homocysteic Acid and Its Stereoisomers in Immature Rats. Epilepsia, 1997, 38, 767-776.	2.6	51
113	Moderate Anticonvulsant Action of Baclofen Does Not Change during Development. Neonatology, 1996, 69, 405-412.	0.9	9
114	Pharmacology of Cortical Epileptic Afterdischarges in Rats. Epilepsia, 1996, 37, 336-341.	2.6	27
115	Suppression of cortical epileptic afterdischarges in developing rats by anticonvulsants increasing GABAergic inhibition. Epilepsy Research, 1996, 25, 177-184.	0.8	18
116	Different Postnatal Development of Convulsions and Lethality Induced by Strychnine in Rats. Basic and Clinical Pharmacology and Toxicology, 1995, 77, 219-224.	0.0	6
117	Seizures Induced by Homocysteine in Rats During Ontogenesis. Epilepsia, 1995, 36, 750-756.	2.6	101
118	Differences between immature and adult rats in brain glutamate decarboxylase inhibition by 3-mercaptopropionic acid. Epilepsy Research, 1995, 20, 179-184.	0.8	18
119	Kainate/AMPA receptor antagonists are anticonvulsant against the tonic hindlimb component of pentylenetetrazol-induced seizures in developing rats. Pharmacology Biochemistry and Behavior, 1995, 51, 153-158.	1.3	23
120	Suppression of cortical epileptic afterdischarges by ketamine is not stable during ontogenesis in rats. Pharmacology Biochemistry and Behavior, 1995, 52, 489-492.	1.3	12
121	Ontogeny and topography of seizure regulation by the substantia nigra. Brain and Development, 1995, 17, 61-72.	0.6	50
122	Experimental Models of Epilepsy in Young Animals. Journal of Child Neurology, 1994, 9, S3-S11.	0.7	30
123	Convulsant action of a benzodiazepine receptor agonist/inverse agonist Ro 19-4603 in developing rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 393-397.	1.4	6
124	Maturation and segregation of brain networks that modify seizures. Brain Research, 1994, 665, 141-146.	1.1	71
125	Aminophylline exhibits convulsant action in rats during ontogenesis. Brain and Development, 1994, 16, 296-300.	0.6	22
126	New model of cortical epileptic foci in freely moving developing rats. Epilepsy Research, 1993, 15, 27-33.	0.8	20

#	Article	IF	CITATIONS
127	Motor and electrocorticographic epileptic activity induced by 3-mercaptopropionic acid in immature rats. Epilepsy Research, 1993, 16, 11-18.	0.8	26
128	Anticonvulsant activity of flumazenil in rats during ontogenetic development. Pharmacology Biochemistry and Behavior, 1993, 44, 581-586.	1.3	14
129	Anticonvulsant Action of Oxcarbazepine, Hydroxycarbamazepine, and Carbamazepine Against Metrazol-Induced Motor Seizures in Developing Rats. Epilepsia, 1993, 34, 188-192.	2.6	57
130	Anticonvulsant Effects of Bretazenil (Ro 16-6028) During Ontogenesis. Epilepsia, 1993, 34, 1130-1134.	2.6	5
131	Effects of a Benzodiazepine, Bretazenil (Ro 16-6028), on Rhythmic Metrazol EEG Activity: Comparison with Standard Anticonvulsants. Epilepsia, 1993, 34, 1135-1140.	2.6	13
132	Action of Antiepileptic Drugs Against Kainic Acid-Induced Seizures and Automatisms During Ontogenesis in Rats. Epilepsia, 1992, 33, 987-993.	2.6	25
133	The effect of ontogenetic development on the anticonvulsant activity of midazolam. Life Sciences, 1992, 50, 1665-1672.	2.0	23
134	Ketamine blocks cortical epileptic afterdischarges but not paired-pulse and frequency potentiation. Neuroscience, 1992, 50, 339-344.	1.1	13
135	Anticonvulsant action of lamotrigine during ontogenesis in rats. Epilepsy Research, 1992, 13, 17-22.	0.8	35
136	Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 346, 588-591.	1.4	134
137	Anticonvulsant effects of phenobarbital and primidone during ontogenesis in rats. Epilepsy Research, 1991, 10, 148-155.	0.8	47
138	Antiepileptic drugs in neuroprotection. , 0, .		2