Jan Brndiar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3361056/publications.pdf

Version: 2024-02-01

1040056 794594 23 351 9 19 citations h-index g-index papers 23 23 23 428 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Charge State Tristability of Oxygen Adatom on a Rutile TiO ₂ (110)–(1 × 1) Surface Controlled by Atomic Force Microscopy. Journal of Physical Chemistry C, 2022, 126, 5064-5069.	3.1	4
2	Electron dynamics of tip-tunable oxygen species on TiO2 surface. Communications Materials, 2021, 2, .	6.9	10
3	Structure and Properties of Heavily B and P Codoped Amorphous Silicon Quantum Dots. Journal of Physical Chemistry C, 2021, 125, 23267-23274.	3.1	1
4	Voltage- and Redox State-Triggered Oxygen Adatom Conductance Switch. Journal of Physical Chemistry C, 2021, 125, 26801-26807.	3.1	2
5	Unraveling the Charge States of Au Nanoclusters on an Oxygen-Rich Rutile TiO ₂ (110) Surface and Their Triboelectrification Overturn by nc-AFM and KPFM. Journal of Physical Chemistry C, 2021, 125, 27607-27614.	3.1	4
6	Imaging the surface potential at the steps on the rutile TiO ₂ (110) surface by Kelvin probe force microscopy. Beilstein Journal of Nanotechnology, 2019, 10, 1228-1236.	2.8	10
7	Tip-Induced Control of Charge and Molecular Bonding of Oxygen Atoms on the Rutile TiO ₂ (110) Surface with Atomic Force Microscopy. ACS Nano, 2019, 13, 6917-6924.	14.6	35
8	Raman Activity of Multilayer Phosphorene under Strain. ACS Omega, 2019, 4, 22418-22425.	3.5	8
9	Subatomic-scale resolution with SPM: Co adatom on p(2 \tilde{A} — 1)Cu(110):O. Nanotechnology, 2019, 30, 095703.	2.6	2
10	Measurement and Manipulation of the Charge State of an Adsorbed Oxygen Adatom on the Rutile TiO ₂ (110)-1×1 Surface by nc-AFM and KPFM. Journal of the American Chemical Society, 2018, 140, 15668-15674.	13.7	51
11	Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic forceÂmicroscopy. Nature Physics, 2017, 13, 663-667.	16.7	19
12	Limitations of Structural Superlubricity: Chemical Bonds versus Contact Size. ACS Nano, 2017, 11, 7642-7647.	14.6	83
13	Strain control of vibrational properties of few layer phosphorene. Journal of Applied Physics, 2016, 120, .	2.5	9
14	Promoting Atoms into Delocalized Long-Living Magnetically Modified State Using Atomic Force Microscopy. Nano Letters, 2016, 16, 7490-7494.	9.1	2
15	Atomic force microscopy identification of Al-sites on ultrathin aluminum oxide film on NiAl(110). Nanotechnology, 2015, 26, 505704.	2.6	8
16	Critical Importance of van der Waals Stabilization in Strongly Chemically Bonded Surfaces: Cu(110):O. Journal of Chemical Theory and Computation, 2013, 9, 5578-5584.	5.3	10
17	van der Waals Interaction Energies of Small Fragments of P, As, Sb, S, Se, and Te: Comparison of Complete Basis Set Limit CCSD(T) and DFT with Approximate Dispersion. Journal of Chemical Theory and Computation, 2012, 8, 2301-2309.	5.3	6
18	Interplay of the tip–sample junction stability and image contrast reversal on a Cu(111) surface revealed by the 3D force field. Nanotechnology, 2012, 23, 045705.	2.6	24

#	Article	IF	CITATIONS
19	Simulation of frictional behavior of Sb nanoparticles on HOPG: Frictional duality and biduality. Physical Review B, $2011, 84, .$	3.2	4
20	Understanding frictional duality and bi-duality: Sb-nanoparticles on HOPG. Nanotechnology, 2011, 22, 085704.	2.6	24
21	Character of eigenstates of the three-dimensional disordered Hamiltonian. Physical Review B, 2008, 77,	3.2	5
22	Generalized Dorokhov-Mello-Pereyra-Kumar equation for strongly localized regime: Numerical solution. Physical Review B, 2007, 76, .	3.2	8
23	Universality of the metal-insulator transition in three-dimensional disordered systems. Physical Review B, 2006, 74, .	3.2	22