Jill K Leutgeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3360370/publications.pdf

Version: 2024-02-01

201385 329751 6,083 37 27 37 h-index citations g-index papers 42 42 42 4534 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Directional Tuning of Phase Precession Properties in the Hippocampus. Journal of Neuroscience, 2022, 42, 2282-2297.	1.7	5
2	Precisely timed theta oscillations are selectively required during the encoding phase of memory. Nature Neuroscience, 2021, 24, 1614-1627.	7.1	22
3	Temporal coding and rate remapping: Representation of nonspatial information in the hippocampus. Hippocampus, 2019, 29, 111-127.	0.9	25
4	Time Cells in the Hippocampus Are Neither Dependent on Medial Entorhinal Cortex Inputs nor Necessary for Spatial Working Memory. Neuron, 2019, 102, 1235-1248.e5.	3.8	44
5	Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex. Nature Communications, 2019, 10, 1341.	5.8	34
6	The hippocampal code for space in Mongolian gerbils. Hippocampus, 2019, 29, 787-801.	0.9	13
7	Stability of medial entorhinal cortex representations over time. Hippocampus, 2019, 29, 284-302.	0.9	15
8	The impact of pathological high-frequency oscillations on hippocampal network activity in rats with chronic epilepsy. ELife, $2019, 8, .$	2.8	45
9	Hippocampal Neural Circuits Respond to Optogenetic Pacing of Theta Frequencies by Generating Accelerated Oscillation Frequencies. Current Biology, 2018, 28, 1179-1188.e3.	1.8	64
10	Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nature Neuroscience, 2018, 21, 258-269.	7.1	101
11	Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex. Cell Reports, 2018, 22, 3152-3159.	2.9	59
12	Recurrent circuits within medial entorhinal cortex superficial layers support grid cell firing. Nature Communications, 2018, 9, 3701.	5.8	38
13	Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes. Neuron, 2017, 94, 83-92.e6.	3.8	153
14	Theta sequences of grid cell populations can provide a movement-direction signal. Current Opinion in Behavioral Sciences, 2017, 17, 147-154.	2.0	17
15	MicroRNA-101 Regulates Multiple Developmental Programs to Constrain Excitation in Adult Neural Networks. Neuron, 2016, 92, 1337-1351.	3.8	73
16	Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts. Neuron, 2015, 85, 190-201.	3.8	238
17	The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nature Neuroscience, 2015, 18, 1123-1132.	7.1	155
18	Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention. Journal of Neuroscience, 2015, 35, 15635-15648.	1.7	49

#	Article	IF	Citations
19	Spatial and memory circuits in the medial entorhinal cortex. Current Opinion in Neurobiology, 2015, 32, 16-23.	2.0	61
20	Medial Entorhinal Cortex Lesions Only Partially Disrupt Hippocampal Place Cells and Hippocampus-Dependent Place Memory. Cell Reports, 2014, 9, 893-901.	2.9	168
21	New and Distinct Hippocampal Place Codes Are Generated in a New Environment during Septal Inactivation. Neuron, 2014, 82, 789-796.	3.8	123
22	Remapping to Discriminate Contexts with Hippocampal Population Codes., 2014,, 227-251.		1
23	Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nature Neuroscience, 2013, 16, 1085-1093.	7.1	90
24	Hippocampal activation during the recall of remote spatial memories in radial maze tasks. Neurobiology of Learning and Memory, 2013, 106, 324-333.	1.0	22
25	Neurogenesis in the dentate gyrus: carrying the message or dictating the tone. Frontiers in Neuroscience, 2013, 7, 50.	1.4	112
26	Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19462-19467.	3.3	307
27	The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations. Science, 2011, 332, 592-595.	6.0	350
28	Attractor-Map Versus Autoassociation Based Attractor Dynamics in the Hippocampal Network. Journal of Neurophysiology, 2010, 104, 35-50.	0.9	115
29	Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning and Memory, 2007, 14, 745-757.	0.5	190
30	Enigmas of the Dentate Gyrus. Neuron, 2007, 55, 176-178.	3.8	19
31	Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus. Science, 2007, 315, 961-966.	6.0	1,399
32	Fast rate coding in hippocampal CA3 cell ensembles. Hippocampus, 2006, 16, 765-774.	0.9	61
33	Place cells, spatial maps and the population code for memory. Current Opinion in Neurobiology, 2005, 15, 738-746.	2.0	157
34	Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles. Science, 2005, 309, 619-623.	6.0	712
35	Progressive Transformation of Hippocampal Neuronal Representations in "Morphed―Environments. Neuron, 2005, 48, 345-358.	3.8	296
36	Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1. Science, 2004, 305, 1295-1298.	6.0	695

#	Article	IF	CITATIONS
37	LTP in cultured hippocampal–entorhinal cortex slices from young adult (P25-30) rats. Journal of Neuroscience Methods, 2003, 130, 19-32.	1.3	45