Jill K Leutgeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3360370/publications.pdf Version: 2024-02-01

IN KIENTCER

#	Article	IF	CITATIONS
1	Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus. Science, 2007, 315, 961-966.	12.6	1,399
2	Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles. Science, 2005, 309, 619-623.	12.6	712
3	Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1. Science, 2004, 305, 1295-1298.	12.6	695
4	The Spatial Periodicity of Grid Cells Is Not Sustained During Reduced Theta Oscillations. Science, 2011, 332, 592-595.	12.6	350
5	Neuronal code for extended time in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19462-19467.	7.1	307
6	Progressive Transformation of Hippocampal Neuronal Representations in "Morphed―Environments. Neuron, 2005, 48, 345-358.	8.1	296
7	Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts. Neuron, 2015, 85, 190-201.	8.1	238
8	Pattern separation, pattern completion, and new neuronal codes within a continuous CA3 map. Learning and Memory, 2007, 14, 745-757.	1.3	190
9	Medial Entorhinal Cortex Lesions Only Partially Disrupt Hippocampal Place Cells and Hippocampus-Dependent Place Memory. Cell Reports, 2014, 9, 893-901.	6.4	168
10	Place cells, spatial maps and the population code for memory. Current Opinion in Neurobiology, 2005, 15, 738-746.	4.2	157
11	The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nature Neuroscience, 2015, 18, 1123-1132.	14.8	155
12	Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes. Neuron, 2017, 94, 83-92.e6.	8.1	153
13	New and Distinct Hippocampal Place Codes Are Generated in a New Environment during Septal Inactivation. Neuron, 2014, 82, 789-796.	8.1	123
14	Attractor-Map Versus Autoassociation Based Attractor Dynamics in the Hippocampal Network. Journal of Neurophysiology, 2010, 104, 35-50.	1.8	115
15	Neurogenesis in the dentate gyrus: carrying the message or dictating the tone. Frontiers in Neuroscience, 2013, 7, 50.	2.8	112
16	Dentate network activity is necessary for spatial working memory by supporting CA3 sharp-wave ripple generation and prospective firing of CA3 neurons. Nature Neuroscience, 2018, 21, 258-269.	14.8	101
17	Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nature Neuroscience, 2013, 16, 1085-1093.	14.8	90
18	MicroRNA-101 Regulates Multiple Developmental Programs to Constrain Excitation in Adult Neural Networks. Neuron, 2016, 92, 1337-1351.	8.1	73

JILL K LEUTGEB

#	Article	IF	CITATIONS
19	Hippocampal Neural Circuits Respond to Optogenetic Pacing of Theta Frequencies by Generating Accelerated Oscillation Frequencies. Current Biology, 2018, 28, 1179-1188.e3.	3.9	64
20	Fast rate coding in hippocampal CA3 cell ensembles. Hippocampus, 2006, 16, 765-774.	1.9	61
21	Spatial and memory circuits in the medial entorhinal cortex. Current Opinion in Neurobiology, 2015, 32, 16-23.	4.2	61
22	Hippocampal Global Remapping Can Occur without Input from the Medial Entorhinal Cortex. Cell Reports, 2018, 22, 3152-3159.	6.4	59
23	Brain State Is a Major Factor in Preseizure Hippocampal Network Activity and Influences Success of Seizure Intervention. Journal of Neuroscience, 2015, 35, 15635-15648.	3.6	49
24	LTP in cultured hippocampal–entorhinal cortex slices from young adult (P25-30) rats. Journal of Neuroscience Methods, 2003, 130, 19-32.	2.5	45
25	The impact of pathological high-frequency oscillations on hippocampal network activity in rats with chronic epilepsy. ELife, 2019, 8, .	6.0	45
26	Time Cells in the Hippocampus Are Neither Dependent on Medial Entorhinal Cortex Inputs nor Necessary for Spatial Working Memory. Neuron, 2019, 102, 1235-1248.e5.	8.1	44
27	Recurrent circuits within medial entorhinal cortex superficial layers support grid cell firing. Nature Communications, 2018, 9, 3701.	12.8	38
28	Hippocampal CA1 replay becomes less prominent but more rigid without inputs from medial entorhinal cortex. Nature Communications, 2019, 10, 1341.	12.8	34
29	Temporal coding and rate remapping: Representation of nonspatial information in the hippocampus. Hippocampus, 2019, 29, 111-127.	1.9	25
30	Hippocampal activation during the recall of remote spatial memories in radial maze tasks. Neurobiology of Learning and Memory, 2013, 106, 324-333.	1.9	22
31	Precisely timed theta oscillations are selectively required during the encoding phase of memory. Nature Neuroscience, 2021, 24, 1614-1627.	14.8	22
32	Enigmas of the Dentate Gyrus. Neuron, 2007, 55, 176-178.	8.1	19
33	Theta sequences of grid cell populations can provide a movement-direction signal. Current Opinion in Behavioral Sciences, 2017, 17, 147-154.	3.9	17
34	Stability of medial entorhinal cortex representations over time. Hippocampus, 2019, 29, 284-302.	1.9	15
35	The hippocampal code for space in Mongolian gerbils. Hippocampus, 2019, 29, 787-801.	1.9	13
36	Directional Tuning of Phase Precession Properties in the Hippocampus. Journal of Neuroscience, 2022, 42, 2282-2297.	3.6	5

#	Article	IF	CITATIONS
37	Remapping to Discriminate Contexts with Hippocampal Population Codes. , 2014, , 227-251.		1