
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3360183/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Momentum Flux by Thermally Induced Internal Gravity Waves and Its Approximation for Large-Scale<br>Models. Journals of the Atmospheric Sciences, 1998, 55, 3299-3310.                                                                    | 0.6 | 118       |
| 2  | Generation Mechanisms of Convectively Forced Internal Gravity Waves and Their Propagation to the Stratosphere. Journals of the Atmospheric Sciences, 2003, 60, 1960-1980.                                                                | 0.6 | 93        |
| 3  | Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves and Its Application to<br>Gravity Wave Drag Parameterization. Part I: Theory. Journals of the Atmospheric Sciences, 2005, 62,<br>107-124.                           | 0.6 | 86        |
| 4  | Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi). Geoscientific Model Development, 2018, 11, 1009-1032.                                         | 1.3 | 81        |
| 5  | Statistics and Possible Sources of Aviation Turbulence over South Korea. Journal of Applied Meteorology and Climatology, 2011, 50, 311-324.                                                                                              | 0.6 | 68        |
| 6  | A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations. Journal of Geophysical Research, 2009, 114, .                                                                     | 3.3 | 65        |
| 7  | A Lagrangian Spectral Parameterization of Gravity Wave Drag Induced by Cumulus Convection.<br>Journals of the Atmospheric Sciences, 2008, 65, 1204-1224.                                                                                 | 0.6 | 55        |
| 8  | Momentum Flux Spectrum of Convective Gravity Waves. Part I: An Update of a Parameterization Using Mesoscale Simulations. Journals of the Atmospheric Sciences, 2011, 68, 739-759.                                                        | 0.6 | 55        |
| 9  | A Numerical Study of Clear-Air Turbulence (CAT) Encounters over South Korea on 2 April 2007.<br>Journal of Applied Meteorology and Climatology, 2010, 49, 2381-2403.                                                                     | 0.6 | 52        |
| 10 | A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophysical<br>Research Letters, 2005, 32, .                                                                                                      | 1.5 | 51        |
| 11 | Evaluations of Upper-Level Turbulence Diagnostics Performance Using the Graphical Turbulence<br>Guidance (GTG) System and Pilot Reports (PIREPs) over East Asia. Journal of Applied Meteorology and<br>Climatology, 2011, 50, 1936-1951. | 0.6 | 43        |
| 12 | Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves and Its Application to<br>Gravity Wave Drag Parameterization. Part II: Impacts in a GCM (WACCM). Journals of the Atmospheric<br>Sciences, 2007, 64, 2286-2308.      | 0.6 | 42        |
| 13 | Impacts of introducing a convective gravityâ€wave parameterization upon the QBO in the Met Office<br>Unified Model. Geophysical Research Letters, 2013, 40, 1873-1877.                                                                   | 1.5 | 41        |
| 14 | Effects of Diabatic Cooling in a Shear Flow with a Critical Level. Journals of the Atmospheric Sciences, 1991, 48, 2476-2491.                                                                                                            | 0.6 | 40        |
| 15 | Effects of Gravity Wave Drag Induced by Cumulus Convection on the Atmospheric General<br>Circulation. Journals of the Atmospheric Sciences, 2001, 58, 302-319.                                                                           | 0.6 | 39        |
| 16 | Consistency between Fourier transform and small-volume few-wave decomposition for spectral and spatial variability of gravity waves above a typhoon. Atmospheric Measurement Techniques, 2012, 5, 1637-1651.                             | 1.2 | 39        |
| 17 | Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in<br>HadGEM2. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1065-1090.                                                          | 1.2 | 39        |
| 18 | An Updated Parameterization of Convectively Forced Gravity Wave Drag for Use in Large-Scale Models.<br>Journals of the Atmospheric Sciences, 2002, 59, 1006-1017.                                                                        | 0.6 | 38        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Secondary waves generated by breaking of convective gravity waves in the mesosphere and their influence in the wave momentum flux. Journal of Geophysical Research, 2008, 113, .                                                   | 3.3 | 38        |
| 20 | A Numerical Simulation of Convectively Induced Turbulence above Deep Convection. Journal of Applied Meteorology and Climatology, 2012, 51, 1180-1200.                                                                              | 0.6 | 38        |
| 21 | Impact of a Convectively Forced Gravity Wave Drag Parameterization in NCAR CCM3. Journal of Climate, 2004, 17, 3530-3547.                                                                                                          | 1.2 | 37        |
| 22 | A comprehensive observational filter for satellite infrared limb sounding of gravity waves.<br>Atmospheric Measurement Techniques, 2015, 8, 1491-1517.                                                                             | 1.2 | 36        |
| 23 | Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses.<br>Atmospheric Chemistry and Physics, 2015, 15, 6577-6587.                                                                            | 1.9 | 34        |
| 24 | Tuning of a convective gravity wave source scheme based on HIRDLS observations. Atmospheric Chemistry and Physics, 2016, 16, 7335-7356.                                                                                            | 1.9 | 33        |
| 25 | Comparison of gravity wave temperature variances from rayâ€based spectral parameterization of convective gravity wave drag with AIRS observations. Journal of Geophysical Research, 2012, 117, .                                   | 3.3 | 32        |
| 26 | Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization.<br>Part I: Spatiotemporal Variations at Source Level. Journals of the Atmospheric Sciences, 2017, 74,<br>3167-3189.               | 0.6 | 31        |
| 27 | Gravity wave temperature variance calculated using the rayâ€based spectral parameterization of convective gravity waves and its comparison with Microwave Limb Sounder observations. Journal of Geophysical Research, 2009, 114, . | 3.3 | 30        |
| 28 | Stratospheric Gravity Waves Generated by Typhoon Saomai (2006): Numerical Modeling in a Moving<br>Frame Following the Typhoon. Journals of the Atmospheric Sciences, 2010, 67, 3617-3636.                                          | 0.6 | 29        |
| 29 | An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1541-1567.                                                                       | 1.0 | 29        |
| 30 | Effects of Convective Gravity Wave Drag in the Southern Hemisphere Winter Stratosphere. Journals of the Atmospheric Sciences, 2013, 70, 2120-2136.                                                                                 | 0.6 | 27        |
| 31 | Sensitivity of typhoonâ€induced gravity waves to cumulus parameterizations. Geophysical Research<br>Letters, 2007, 34, .                                                                                                           | 1.5 | 25        |
| 32 | Effects of Nonlinearity on Convectively Forced Internal Gravity Waves: Application to a Gravity Wave<br>Drag Parameterization. Journals of the Atmospheric Sciences, 2008, 65, 557-575.                                            | 0.6 | 25        |
| 33 | Influence of Gravity Waves in the Tropical Upwelling: WACCM Simulations. Journals of the Atmospheric Sciences, 2011, 68, 2599-2612.                                                                                                | 0.6 | 23        |
| 34 | Characteristics of Atmospheric Turbulence Retrieved From High Verticalâ€Resolution Radiosonde Data<br>in the United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7553-7579.                                  | 1.2 | 23        |
| 35 | Characteristics of inertioâ€gravity waves revealed in rawinsonde data observed in Korea during 20<br>August to 5 September 2002. Journal of Geophysical Research, 2007, 112, .                                                     | 3.3 | 21        |
| 36 | Momentum Flux of Convective Gravity Waves Derived from an Offline Gravity Wave Parameterization.<br>Part II: Impacts on the Quasi-Biennial Oscillation. Journals of the Atmospheric Sciences, 2018, 75,<br>3753-3775.              | 0.6 | 21        |

| #  | Article                                                                                                                                                                                                                    | IF            | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 37 | Role of equatorial waves and convective gravity waves in the 2015/16Âquasi-biennial oscillation disruption. Atmospheric Chemistry and Physics, 2020, 20, 14669-14693.                                                      | 1.9           | 19        |
| 38 | Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt.<br>Bohyun, Korea (36° N). Journal of Astronomy and Space Sciences, 2010, 27, 181-188.                                      | 0.3           | 18        |
| 39 | Characteristics of Binary Tropical Cyclones Observed in the Western North Pacific for 62 Years<br>(1951–2012). Monthly Weather Review, 2015, 143, 1749-1761.                                                               | 0.5           | 17        |
| 40 | Aviation turbulence encounters detected from aircraft observations: spatiotemporal characteristics and application to Korean Aviation Turbulence Guidance. Meteorological Applications, 2016, 23, 594-604.                 | 0.9           | 17        |
| 41 | Transient, Linear Dynamics of a Stably Stratified Shear Flow with Thermal Forcing and a Critical Level.<br>Journals of the Atmospheric Sciences, 1999, 56, 483-499.                                                        | 0.6           | 16        |
| 42 | Characteristics and Momentum Flux Spectrum of Convectively Forced Internal Gravity Waves in Ensemble Numerical Simulations. Journals of the Atmospheric Sciences, 2007, 64, 3723-3734.                                     | 0.6           | 16        |
| 43 | Seasonal, annual and inter-annual features of turbulence parameters over the tropical station Pune<br>(18°32' N, 73°51' E) observed with UHF wind profiler. Annales Geophysicae, 2008, 26, 3677-3692.                      | 0.6           | 16        |
| 44 | Impact of typhoon-generated gravity waves in the typhoon development. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                                     | 1.5           | 16        |
| 45 | Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20<br>quasi-biennial oscillation (QBO) disruption. Atmospheric Chemistry and Physics, 2021, 21, 9839-9857.                          | 1.9           | 16        |
| 46 | Comparison of simulated and observed convective gravity waves. Journal of Geophysical Research D:<br>Atmospheres, 2016, 121, 13,474.                                                                                       | 1.2           | 15        |
| 47 | Comparison of Turbulence Indicators Obtained from In Situ Flight Data. Journal of Applied<br>Meteorology and Climatology, 2017, 56, 1609-1623.                                                                             | 0.6           | 15        |
| 48 | Seasonal variations of gravity waves revealed in rawinsonde data at Pohang, Korea. Meteorology and<br>Atmospheric Physics, 2006, 93, 255-273.                                                                              | 0.9           | 14        |
| 49 | Sea surface temperature as a proxy for convective gravity wave excitation: a study based on global gravity wave observations in the middle atmosphere. Annales Geophysicae, 2014, 32, 1373-1394.                           | 0.6           | 14        |
| 50 | Horizontal divergence of typhoon-generated gravity waves in the upper troposphere and lower<br>stratosphere (UTLS) and its influence on typhoon evolution. Atmospheric Chemistry and Physics, 2014,<br>14, 3175-3182.      | 1.9           | 14        |
| 51 | Inertiaâ€Gravity Waves Revealed in Radiosonde Data at Jang Bogo Station, Antarctica (74°37′S, 164°13′<br>Characteristics, Energy, and Momentum Flux. Journal of Geophysical Research D: Atmospheres, 2018,<br>123, 13,305. | E): 1.<br>1.2 | 14        |
| 52 | Characteristics of gravity waves generated in the jet-front system in aÂbaroclinic instability simulation. Atmospheric Chemistry and Physics, 2016, 16, 4799-4815.                                                         | 1.9           | 13        |
| 53 | Effects of Non-orographic Gravity Wave Drag on Seasonal and Medium-range Predictions in a Global<br>Forecast Model. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 385-402.                                       | 1.3           | 13        |
| 54 | Retrieval of eddy dissipation rate from derived equivalent vertical gust included in Aircraft<br>Meteorological Data Relay (AMDAR). Atmospheric Measurement Techniques, 2020, 13, 1373-1385.                               | 1.2           | 13        |

| #  | Article                                                                                                                                                                                                                                                                      | IF            | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 55 | Gravity wave reflection and its influence on the consistency of temperature- and wind-based<br>momentum fluxes simulated above Typhoon Ewiniar. Atmospheric Chemistry and Physics, 2012, 12,<br>10787-10795.                                                                 | 1.9           | 12        |
| 56 | Meteor radar observations of vertically propagating lowâ€frequency inertiaâ€gravity waves near the southern polar mesopause region. Journal of Geophysical Research: Space Physics, 2017, 122, 4777-4800.                                                                    | 0.8           | 12        |
| 57 | Research Collaborations for Better Predictions of Aviation Weather Hazards. Bulletin of the<br>American Meteorological Society, 2017, 98, ES103-ES107.                                                                                                                       | 1.7           | 12        |
| 58 | A Numerical Study of Aviation Turbulence Encountered on 13 February 2013 over the Yellow Sea<br>between China and the Korean Peninsula. Journal of Applied Meteorology and Climatology, 2018, 57,<br>1043-1060.                                                              | 0.6           | 12        |
| 59 | The equatorial stratospheric semiannual oscillation and timeâ€mean winds in QBOi models. Quarterly<br>Journal of the Royal Meteorological Society, 2022, 148, 1593-1609.                                                                                                     | 1.0           | 12        |
| 60 | Role of Gravity Waves in a Vortex-Split Sudden Stratospheric Warming in January 2009. Journals of the Atmospheric Sciences, 2020, 77, 3321-3342.                                                                                                                             | 0.6           | 12        |
| 61 | Latitudinal Variations of the Convective Source and Propagation Condition of Inertio-Gravity Waves in the Tropics. Journals of the Atmospheric Sciences, 2007, 64, 1603-1618.                                                                                                | 0.6           | 11        |
| 62 | Inertia gravity waves associated with deep convection observed during the summers of 2005 and 2007 in Korea. Journal of Geophysical Research, 2011, 116, .                                                                                                                   | 3.3           | 11        |
| 63 | Development of Near-Cloud Turbulence Diagnostics Based on a Convective Gravity Wave Drag<br>Parameterization. Journal of Applied Meteorology and Climatology, 2019, 58, 1725-1750.                                                                                           | 0.6           | 11        |
| 64 | Activities of Smallâ€5cale Gravity Waves in the Upper Mesosphere Observed From Meteor Radar at King<br>Sejong Station, Antarctica (62.22°S, 58.78°W) and Their Potential Sources. Journal of Geophysical<br>Research D: Atmospheres, 2021, 126, e2021JD034528.               | 1.2           | 11        |
| 65 | A numerical study on severe downslope windstorms occurred on 5 April 2005 at Gangneung and<br>Yangyang, Korea. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46, 155-172.                                                                                              | 1.3           | 10        |
| 66 | Characteristics and sources of inertia-gravity waves revealed in the KEOP-2007 radiosonde data.<br>Asia-Pacific Journal of Atmospheric Sciences, 2010, 46, 261-277.                                                                                                          | 1.3           | 10        |
| 67 | The Effects of Topography on the Evolution of Typhoon Saomai (2006) under the Influence of Tropical<br>Storm Bopha (2006). Monthly Weather Review, 2013, 141, 468-489.                                                                                                       | 0.5           | 10        |
| 68 | Differences in the Tropical Convective Activities at the Opposite Phases of the Quasi-Biennial Oscillation. Asia-Pacific Journal of Atmospheric Sciences, 2019, 55, 317-336.                                                                                                 | 1.3           | 10        |
| 69 | Inertiaâ€Gravity Waves Revealed in Radiosonde Data at Jang Bogo Station, Antarctica (74°37′S, 164°13′<br>Potential Sources and Their Relation to Inertiaâ€Gravity Waves. Journal of Geophysical Research D:<br>Atmospheres, 2020, 125, e2019JD032260.                        | E): 2.<br>1.2 | 10        |
| 70 | Development of the Korean Aviation Turbulence Guidance (KTG) System using the Operational Unified<br>Model (UM) of the Korea Meteorological Administration (KMA) and Pilot Reports (PIREPs). Journal of<br>the Korean Society for Aviation and Aeronautics, 2012, 20, 76-83. | 0.3           | 10        |
| 71 | Potential sources of atmospheric turbulence estimated using the Thorpe method and operational radiosonde data in the United States. Atmospheric Research, 2022, 265, 105891.                                                                                                 | 1.8           | 10        |
| 72 | Generation mechanisms of convectively induced internal gravity waves in a three-dimensional framework. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 163-177.                                                                                                      | 1.3           | 8         |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Impact of climate variabilities on trans-oceanic flight times and emissions during strong NAO and ENSO phases. Environmental Research Letters, 2020, 15, 105017.                                                                               | 2.2 | 8         |
| 74 | Evaluation of Multimodel-Based Ensemble Forecasts for Clear-Air Turbulence. Weather and Forecasting, 2019, 35, 507-521.                                                                                                                        | 0.5 | 7         |
| 75 | Development of the Korean Peninsula-Korean Aviation Turbulence Guidance (KP-KTG) System Using the<br>Local Data Assimilation and Prediction System (LDAPS) of the Korea Meteorological Administration<br>(KMA). Atmosphere, 2015, 25, 367-374. | 0.3 | 7         |
| 76 | Propagation of gravity waves and its effects on pseudomomentum flux in a sudden stratospheric warming event. Atmospheric Chemistry and Physics, 2020, 20, 7617-7644.                                                                           | 1.9 | 7         |
| 77 | Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data. Atmospheric Measurement Techniques, 2022, 15, 2277-2298.                                                           | 1.2 | 7         |
| 78 | Impacts on the TRMM data due to orbit boost in the spectral domain. Geophysical Research Letters, 2008, 35, .                                                                                                                                  | 1.5 | 6         |
| 79 | Momentum flux of stratospheric gravity waves generated by Typhoon Ewiniar(2006). Asia-Pacific<br>Journal of Atmospheric Sciences, 2010, 46, 199-208.                                                                                           | 1.3 | 6         |
| 80 | A Statistical Analysis of Aviation Turbulence Observed in Pilot Report (PIREP) over East Asia Including<br>South Korea. Atmosphere, 2015, 25, 129-140.                                                                                         | 0.3 | 6         |
| 81 | Classification of Synoptic Patterns With Mesoscale Mechanisms for Downslope Windstorms in Korea<br>Using a Selfâ€Organizing Map. Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                  | 1.2 | 6         |
| 82 | Effects of thermodynamic profiles on the interaction of binary tropical cyclones. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9173-9192.                                                                                        | 1.2 | 5         |
| 83 | Gravity Waves Associated with Jet/Front Systems. Part I: Diagnostics and their Correlations with GWs<br>Revealed in High-Resolution Global Analysis Data. Asia-Pacific Journal of Atmospheric Sciences, 2019,<br>55, 589-608.                  | 1.3 | 5         |
| 84 | A numerical simulation of a strong windstorm event in the Taebaek Mountain Region in Korea during the ICE-POP 2018. Atmospheric Research, 2022, 272, 106158.                                                                                   | 1.8 | 5         |
| 85 | A computationally efficient nonstationary convective gravity-wave drag parameterization for global atmospheric prediction systems. Geophysical Research Letters, 2005, 32, n/a-n/a.                                                            | 1.5 | 4         |
| 86 | Dynamic Initialization for Whole Atmospheric Global Modeling. Journal of Advances in Modeling<br>Earth Systems, 2018, 10, 2096-2120.                                                                                                           | 1.3 | 4         |
| 87 | Development and Evaluation of Global Korean Aviation Turbulence Forecast Systems Based on an<br>Operational Numerical Weather Prediction Model and In Situ Flight Turbulence Observation Data.<br>Weather and Forecasting, 2022, , .           | 0.5 | 4         |
| 88 | Changes in the Brewer-Dobson circulation for 1980–2009 revealed in MERRA reanalysis data.<br>Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 625-644.                                                                                  | 1.3 | 3         |
| 89 | AIRS Satellite Observations of Gravity Waves During the 2009 Sudden Stratospheric Warming Event.<br>Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034073.                                                                  | 1.2 | 3         |
| 90 | Improving Numerical Weather Prediction–Based Near-Cloud Aviation Turbulence Forecasts by<br>Diagnosing Convective Gravity Wave Breaking. Weather and Forecasting, 2021, 36, 1735-1757.                                                         | 0.5 | 3         |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Impact of Convective Gravity Waves on the Tropical Middle Atmosphere During the Maddenâ€Julian<br>Oscillation. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8975-8992. | 1.2 | 1         |
| 92 | Contributions of Convective and Orographic Gravity Waves to the Brewer–Dobson Circulation<br>Estimated from NCEP CFSR. Journals of the Atmospheric Sciences, 2020, 77, 981-1000.     | 0.6 | 1         |
| 93 | Theoretical investigation of nonhydrostatic effects on convectively forced flows: Propagating and evanescent gravity-wave modes. Physics of Fluids, 2018, 30, 126604.                | 1.6 | Ο         |
| 94 | A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea. Atmosphere, 2012, 22, 321-330.                                                                           | 0.3 | 0         |