Philip E Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3360117/publications.pdf

Version: 2024-02-01

46 papers

3,326 citations

30 h-index 214527 47 g-index

47 all docs

47 docs citations

47 times ranked

2836 citing authors

#	Article	IF	CITATIONS
1	Effects of age, speed, and step length on lower extremity net joint moments and powers during walking. Human Movement Science, 2020, 71, 102611.	0.6	21
2	A general model for estimating lower extremity inertial properties of individuals with transtibial amputation. Journal of Biomechanics, 2017, 54, 44-48.	0.9	14
3	Effects of age and physical activity status on redistribution of joint work during walking. Gait and Posture, 2016, 50, 131-136.	0.6	21
4	Asymmetrical pedaling patterns in Parkinson's disease patients. Clinical Biomechanics, 2014, 29, 1089-1094.	0.5	8
5	Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis. Journal of Visualized Experiments, 2014, , .	0.2	16
6	Asymmetrical loading affects intersegmental dynamics during the swing phase of walking. Human Movement Science, 2013, 32, 652-667.	0.6	4
7	Effects of Prosthetic Mass Distribution on Metabolic Costs and Walking Symmetry. Journal of Applied Biomechanics, 2013, 29, 317-328.	0.3	54
8	Heel height affects lower extremity frontal plane joint moments during walking. Gait and Posture, 2012, 35, 483-488.	0.6	50
9	Lower extremity mechanical work during stance phase of running partially explains interindividual variability of metabolic power. European Journal of Applied Physiology, 2011, 111, 1777-1785.	1.2	13
10	Short and Longer Term Changes in Amputee Walking Patterns Due to Increased Prosthesis Inertia. Journal of Prosthetics and Orthotics, 2011, 23, 114-123.	0.2	16
11	Effects of age and walking speed on coactivation and cost of walking in healthy adults. Gait and Posture, 2010, 31, 355-359.	0.6	155
12	Mechanical power and efficiency of level walking with different stride rates. Journal of Experimental Biology, 2007, 210, 3255-3265.	0.8	195
13	Walking patterns change rapidly following asymmetrical lower extremity loading. Human Movement Science, 2007, 26, 412-425.	0.6	32
14	Muscle fiber type effects on energetically optimal cadences in cycling. Journal of Biomechanics, 2006, 39, 1472-1479.	0.9	55
15	Manipulations of Leg Mass and Moment of Inertia: Effects on Energy Cost of Walking. Medicine and Science in Sports and Exercise, 2005, 37, 649-656.	0.2	92
16	Longitudinal stratification of gait economy in young boys and girls: the locomotion energy and growth study. European Journal of Applied Physiology, 2004, 91, 30-34.	1.2	12
17	A Model of Human Muscle Energy Expenditure. Computer Methods in Biomechanics and Biomedical Engineering, 2003, 6, 99-111.	0.9	298
18	Trends in Interdisciplinary and Integrative Graduate Training: An NSF IGERT Example. Quest, 2003, 55, 86-94.	0.8	10

#	Article	IF	CITATIONS
19	Prediction of the aerobic demand of walking in children. Medicine and Science in Sports and Exercise, 2002, 34, 2097-2102.	0.2	14
20	Longitudinal profiles of oxygen uptake during treadmill walking in able-bodied children: the locomotion energy and growth study. Gait and Posture, 2002, 15, 230-235.	0.6	25
21	Testing the Planar Assumption during Ergometer Cycling. Journal of Applied Biomechanics, 2001, 17, 55-62.	0.3	28
22	Are variations in running economy in humans associated with ground reaction force characteristics?. European Journal of Applied Physiology, 2001, 84, 438-442.	1.2	80
23	Is a joint moment-based cost function associated with preferred cycling cadence?. Journal of Biomechanics, 2000, 33, 173-180.	0.9	63
24	Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Medicine and Science in Sports and Exercise, 2000, 32, 1630-1634.	0.2	70
25	Walking symmetry and energy cost in persons with unilateral transtibial amputations: Matching prosthetic and intact limb inertial properties. Archives of Physical Medicine and Rehabilitation, 2000, 81, 561-568.	0.5	165
26	???Leg spring??? characteristics and the aerobic demand of running. Medicine and Science in Sports and Exercise, 1998, 30, 750-754.	0.2	76
27	Perceived exertion and the preferred cycling cadence. Medicine and Science in Sports and Exercise, 1998, 30, 942-948.	0.2	35
28	Perceived exertion and the preferred cycling cadence. Medicine and Science in Sports and Exercise, 1998, 30, 942-948.	0.2	16
29	The effects of short term balance training on the postural control of older adults. Gait and Posture, 1997, 6, 224-236.	0.6	54
30	Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking. Gait and Posture, 1997, 6, 126-136.	0.6	165
31	Effect of cycling experience, aerobic power, and power output on preferred and most economical cycling cadences. Medicine and Science in Sports and Exercise, 1997, 29, 1225-1232.	0.2	95
32	Joint kinetics in unilateral below-knee amputee patients during running. Archives of Physical Medicine and Rehabilitation, 1996, 77, 1279-1285.	0.5	54
33	The relationship between cadence and lower extremity EMG in cyclists and noncyclists. Medicine and Science in Sports and Exercise, 1995, 27, 217????225.	0.2	102
34	The relationship between smoothness and economy during walking. Biological Cybernetics, 1993, 69, 213-218.	0.6	42
35	The association between cycling experience and preferred and most economical cadences. Medicine and Science in Sports and Exercise, 1993, 25, 1269???1274.	0.2	91
36	Biomechanical considerations for economical walking and running. Medicine and Science in Sports and Exercise, 1992, 24, 467???474.	0.2	76

#	Article	IF	CITATIONS
37	Step length and frequency effects on ground reaction forces during walking. Journal of Biomechanics, 1992, 25, 1237-1239.	0.9	89
38	Electromyographic analysis of bow string release in highly skilled archers. Journal of Sports Sciences, 1990, 8, 215-221.	1.0	28
39	Segment interactions within the swing leg during unloaded and loaded running. Journal of Biomechanics, 1990, 23, 529-536.	0.9	43
40	Estimating segment inertial properties: Comparison of magnetic resonance imaging with existing methods. Journal of Biomechanics, 1990, 23, 1039-1046.	0.9	98
41	Ten kilometer performance and predicted velocity at VO2max among well-trained male runners. Medicine and Science in Sports and Exercise, 1989, 21, 78-83.	0.2	202
42	The use of magnetic resonance imaging for measuring segment inertial properties. Journal of Biomechanics, 1989, 22, 367-376.	0.9	90
43	Characteristic Patterns of Gait in the Healthy Old. Annals of the New York Academy of Sciences, 1988, 515, 18-32.	1.8	114
44	The effect of carried loads on the walking patterns of men and women. Ergonomics, 1986, 29, 1191-1202.	1.1	190
45	Mechanical and physiological responses to lower extremity loading during running. Medicine and Science in Sports and Exercise, 1985, 17, 427-433.	0.2	131
46	The Effect of Carried Loads on the Combative Movement Performance of Men and Women. Military Medicine, 1985, 150, 357-362.	0.4	21