Heather D Willauer

List of Publications by Citations

Source: https://exaly.com/author-pdf/3359788/heather-d-willauer-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

29 5,071 18 30 g-index

30 5,360 6.4 5.03 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
29	Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. <i>Green Chemistry</i> , 2001 , 3, 156-164	10	3198
28	Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. <i>Journal of the American Chemical Society</i> , 2003 , 125, 6632-3	16.4	858
27	Solute Partitioning in Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt: The Partitioning of Small Neutral Organic Species. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 1892-1904	3.9	149
26	Phase Diagram Data for Several PEG + Salt Aqueous Biphasic Systems at 25 °C. <i>Journal of Chemical & Engineering Data</i> , 2003 , 48, 1230-1236	2.8	134
25	Aqueous Polymeric Solutions as Environmentally Benign Liquid/Liquid Extraction Media. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2523-2539	3.9	123
24	Solvent Properties of Aqueous Biphasic Systems Composed of Polyethylene Glycol and Salt Characterized by the Free Energy of Transfer of a Methylene Group between the Phases and by a Linear Solvation Energy Relationship. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 2591-2	3.9 2 601	93
23	Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor. <i>Journal of CO2 Utilization</i> , 2013 , 3-4, 56-64	7.6	58
22	Potassium-Promoted Molybdenum Carbide as a Highly Active and Selective Catalyst for CO Conversion to CO. <i>ChemSusChem</i> , 2017 , 10, 2408-2415	8.3	47
21	The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. <i>Nature Climate Change</i> , 2018 , 8, 621-625	21.4	47
20	PARTITIONING OF AROMATIC MOLECULES IN AQUEOUS BIPHASIC SYSTEMS. Separation Science and Technology, 1999 , 34, 1069-1090	2.5	42
19	Mitigation of TNT and Destex explosion effects using water mist. <i>Journal of Hazardous Materials</i> , 2009 , 165, 1068-73	12.8	34
18	Feasibility of CO2 Extraction from Seawater and Simultaneous Hydrogen Gas Generation Using a Novel and Robust Electrolytic Cation Exchange Module Based on Continuous Electrodeionization Technology. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12192-12200	3.9	30
17	Analysis of inorganic and small organic ions with the capillary electrophoresis microchip. <i>Electrophoresis</i> , 2003 , 24, 2193-207	3.6	30
16	Alkali promoted tungsten carbide as a selective catalyst for the reverse water gas shift reaction. Journal of CO2 Utilization, 2020, 35, 38-46	7.6	30
15	The solvatochromic properties, Pland B, of PEG-salt aqueous biphasic systems. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4065-4070	3.6	27
14	Assessing the viability of K-Mo2C for reverse watergas shift scale-up: molecular to laboratory to pilot scale. <i>Energy and Environmental Science</i> , 2020 , 13, 2524-2539	35.4	26
13	Characterization of Hydrophilic and Hydrophobic Ionic Liquids: Alternatives to Volatile Organic Compounds for Liquid-Liquid Separations. <i>ACS Symposium Series</i> , 2002 , 289-308	0.4	24

LIST OF PUBLICATIONS

12	Effects of Fine Water Mist on a Confined Blast. <i>Fire Technology</i> , 2012 , 48, 641-675	3	21
11	Elucidating the role of oxygen coverage in CO2 reduction on Mo2C. <i>Catalysis Science and Technology</i> , 2017 , 7, 5521-5529	5.5	18
10	Development of an Electrolytic Cation Exchange Module for the Simultaneous Extraction of Carbon Dioxide and Hydrogen Gas from Natural Seawater. <i>Energy & Energy & En</i>	4.1	17
9	Development of an Electrochemical Acidification Cell for the Recovery of CO2 and H2 from Seawater. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9876-9882	3.9	17
8	Development of an Electrochemical Acidification Cell for the Recovery of CO2 and H2 from Seawater II. Evaluation of the Cell by Natural Seawater. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 11254-11260	3.9	13
7	TEMPERATURE EFFECTS ON POLYMER-BASED AQUEOUS BIPHASIC EXTRACTION TECHNOLOGY IN THE PAPER PULPING PROCESS. <i>Separation Science and Technology</i> , 2001 , 36, 835-847	2.5	13
6	Incompatibility of Fischer Tropsch Diesel with Petroleum and Soybean Biodiesel Blends. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 7364-7367	3.9	7
5	Green Separation Science and Technology: Replacement of Volatile Organic Compounds in Industrial Scale Liquid-Liquid or Chromatographic Separations. <i>ACS Symposium Series</i> , 2000 , 206-221	0.4	6
4	Metal Ion Separations in Aqueous Biphasic Systems and Using Aqueous Biphasic Extraction Chromatography. <i>ACS Symposium Series</i> , 1999 , 79-100	0.4	4
3	Evaluation of CO2 Hydrogenation in a Modular Fixed-Bed Reactor Prototype. <i>Catalysts</i> , 2020 , 10, 970	4	3
2	Water in Solutions of Chaotropic and Kosmotropic Salts: A Differential Scanning Calorimetry Investigation. <i>Journal of Chemical & Data</i> , 2019, 64, 4781-4792	2.8	2
1	Synthetic Fuel Development 2020 , 561-580		Ο