List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3359612/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | De Novo Design and Structural Characterization of Proteins and Metalloproteins. Annual Review of<br>Biochemistry, 1999, 68, 779-819.                                                                                       | 5.0  | 576       |
| 2  | De Novo Design of Helical Bundles as Models for Understanding Protein Folding and Function.<br>Accounts of Chemical Research, 2000, 33, 745-754.                                                                           | 7.6  | 311       |
| 3  | Retrostructural analysis of metalloproteins: Application to the design of a minimal model for diiron<br>proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97,<br>6298-6305. | 3.3  | 222       |
| 4  | Peptide-Based Hemeâ^'Protein Models. Chemical Reviews, 2001, 101, 3165-3190.                                                                                                                                               | 23.0 | 183       |
| 5  | An artificial di-iron oxo-protein with phenol oxidase activity. Nature Chemical Biology, 2009, 5, 882-884.                                                                                                                 | 3.9  | 170       |
| 6  | Design and engineering of artificial oxygen-activating metalloenzymes. Chemical Society Reviews, 2016, 45, 5020-5054.                                                                                                      | 18.7 | 148       |
| 7  | Discovering protein secondary structures: Classification and description of isolated α-turns. , 1996, 38, 705-721.                                                                                                         |      | 120       |
| 8  | Structural characterization of the .betabend ribbon spiral: crystallographic analysis of two long<br>(L-Pro-Aib)n sequential peptides. Journal of the American Chemical Society, 1992, 114, 6273-6278.                     | 6.6  | 106       |
| 9  | A Modified Cyclodextrin with a Fully Encapsulated Dansyl Group: Selfâ€Inclusion in the Solid State and in Solution. Chemistry - A European Journal, 1996, 2, 373-381.                                                      | 1.7  | 105       |
| 10 | Toward the de Novo Design of a Catalytically Active Helix Bundle:Â A Substrate-Accessible<br>Carboxylate-Bridged Dinuclear Metal Center. Journal of the American Chemical Society, 2001, 123,<br>12749-12757.              | 6.6  | 100       |
| 11 | De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities. Accounts of<br>Chemical Research, 2019, 52, 1148-1159.                                                                            | 7.6  | 99        |
| 12 | Artificial diiron proteins: From structure to function. Biopolymers, 2005, 80, 264-278.                                                                                                                                    | 1.2  | 93        |
| 13 | Exploring the role of unnatural amino acids in antimicrobial peptides. Scientific Reports, 2018, 8, 8888.                                                                                                                  | 1.6  | 76        |
| 14 | Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends in Biochemical Sciences, 2019, 44, 1022-1040.                                                                                                | 3.7  | 76        |
| 15 | Preorganization of molecular binding sites in designed diiron proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 3772-3777.                                             | 3.3  | 73        |
| 16 | Hydrogen evolution from water catalyzed by cobalt-mimochrome VI*a, a synthetic mini-protein.<br>Chemical Science, 2018, 9, 8582-8589.                                                                                      | 3.7  | 71        |
| 17 | A Heme–Peptide Metalloenzyme Mimetic with Natural Peroxidaseâ€Like Activity. Chemistry - A European<br>Journal, 2011, 17, 4444-4453.                                                                                       | 1.7  | 68        |
| 18 | Immune-modulating effects of bevacizumab in metastatic non-small-cell lung cancer patients. Cell<br>Death Discovery, 2016, 2, 16025.                                                                                       | 2.0  | 68        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Miniaturized metalloproteins: Application to iron-sulfur proteins. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11922-11927.                                                         | 3.3 | 66        |
| 20 | Artificial Diiron Enzymes with a De Novo Designed Fourâ€Helix Bundle Structure. European Journal of<br>Inorganic Chemistry, 2015, 2015, 3371-3390.                                                                                 | 1.0 | 65        |
| 21 | Novel human bioactive peptides identified in Apolipoprotein B: Evaluation of their therapeutic potential. Biochemical Pharmacology, 2017, 130, 34-50.                                                                              | 2.0 | 64        |
| 22 | Tertiary templates for the design of diiron proteins. Current Opinion in Structural Biology, 1999, 9, 500-508.                                                                                                                     | 2.6 | 63        |
| 23 | Noncoded residues as building blocks in the design of specific secondary structures: Symmetrically disubstituted glycines and ?-alanine. Biopolymers, 1993, 33, 1037-1049.                                                         | 1.2 | 62        |
| 24 | Hemoprotein Models Based on a Covalent Helix–Heme–Helix Sandwich: 1. Design, Synthesis, and<br>Characterization. Chemistry - A European Journal, 1997, 3, 340-349.                                                                 | 1.7 | 61        |
| 25 | Analysis and Design of Turns in α-Helical Hairpins. Journal of Molecular Biology, 2005, 346, 1441-1454.                                                                                                                            | 2.0 | 59        |
| 26 | Analysis and design of three-stranded coiled coils and three-helix bundles. Folding & Design, 1998, 3,<br>R29-R40.                                                                                                                 | 4.5 | 57        |
| 27 | Sliding Helix and Change of Coordination Geometry in a Model Di-MnII Protein. Angewandte Chemie -<br>International Edition, 2003, 42, 417-420.                                                                                     | 7.2 | 52        |
| 28 | Regularly alternatingL,D-peptides. III. Hexacyclic peptides from valine or phenylalanine. Biopolymers,<br>1989, 28, 215-223.                                                                                                       | 1.2 | 49        |
| 29 | Response of a Designed Metalloprotein to Changes in Metal Ion Coordination, Exogenous Ligands, and<br>Active Site Volume Determined by X-ray Crystallography. Journal of the American Chemical Society,<br>2005, 127, 17266-17276. | 6.6 | 49        |
| 30 | ?-Alanine containing peptides: A novel molecular tool for the design of ?-turns. Biopolymers, 1992, 32, 173-183.                                                                                                                   | 1.2 | 46        |
| 31 | De novo design of heterotrimeric coiled coils. Biopolymers, 1996, 40, 495-504.                                                                                                                                                     | 1.2 | 45        |
| 32 | Hemoprotein Models Based on a Covalent Helix–Heme–Helix Sandwich: 2. Structural Characterization<br>of Co <sup>III</sup> Mimochrome I δand δIsomers. Chemistry - A European Journal, 1997, 3, 350-362.                             | 1.7 | 45        |
| 33 | Design of a New Mimochrome with Unique Topology. Chemistry - A European Journal, 2003, 9, 5643-5654.                                                                                                                               | 1.7 | 42        |
| 34 | Diiron-containing metalloproteins: Developing functional models. Comptes Rendus Chimie, 2007, 10,<br>703-720.                                                                                                                      | 0.2 | 42        |
| 35 | Cyclic ?-alanyl-?-alanine containing peptides: A new molecular tool for ?-turned peptides. Biopolymers,<br>1990, 30, 189-196.                                                                                                      | 1.2 | 40        |
| 36 | From synthetic coiled coils to functional proteins: automated design of a receptor for the calmodulin-binding domain of calcineurin. Journal of Molecular Biology, 1998, 281, 379-391.                                             | 2.0 | 40        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Oxidation catalysis by iron and manganese porphyrins within enzymeâ€like cages. Biopolymers, 2018, 109, e23107.                                                                                                                      | 1.2 | 40        |
| 38 | An artificial heme-enzyme with enhanced catalytic activity: evolution, functional screening and structural characterization. Organic and Biomolecular Chemistry, 2015, 13, 4859-4868.                                                | 1.5 | 38        |
| 39 | Enhancement of Peroxidase Activity in Artificial Mimochromeâ€VI Catalysts through Rational Design.<br>ChemBioChem, 2018, 19, 1823-1826.                                                                                              | 1.3 | 38        |
| 40 | Miniaturized heme proteins: crystal structure of Co(III)-mimochrome IV. Journal of Biological<br>Inorganic Chemistry, 2004, 9, 1017-1027.                                                                                            | 1.1 | 37        |
| 41 | Tuning Mechanism through Buffer Dependence of Hydrogen Evolution Catalyzed by a Cobalt<br>Mini-enzyme. Biochemistry, 2020, 59, 1289-1297.                                                                                            | 1.2 | 36        |
| 42 | Allosteric cooperation in a de novo-designed two-domain protein. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33246-33253.                                                            | 3.3 | 35        |
| 43 | ?-Alanyl-?-alanine in cyclic ?-turned peptides. Biopolymers, 1991, 31, 1181-1188.                                                                                                                                                    | 1.2 | 34        |
| 44 | β-Alanine and β-bends. X-Ray diffraction structures of three linear oligopeptides. Journal of the<br>Chemical Society Perkin Transactions II, 1992, , 1233-1237.                                                                     | 0.9 | 33        |
| 45 | A De Novo Heterodimeric Dueâ€Ferri Protein Minimizes the Release of Reactive Intermediates in<br>Dioxygenâ€Đependent Oxidation. Angewandte Chemie - International Edition, 2017, 56, 15580-15583.                                    | 7.2 | 33        |
| 46 | Miniaturized hemoproteins. Biopolymers, 1998, 47, 5-22.                                                                                                                                                                              | 1.2 | 32        |
| 47 | De Novo Design, Synthesis and Characterisation of MP3, A New Catalytic Fourâ€Helix Bundle<br>Hemeprotein. Chemistry - A European Journal, 2012, 18, 15960-15971.                                                                     | 1.7 | 32        |
| 48 | <i>De Novo</i> Design of Tetranuclear Transition Metal Clusters Stabilized by Hydrogen-Bonded<br>Networks in Helical Bundles. Journal of the American Chemical Society, 2018, 140, 1294-1304.                                        | 6.6 | 32        |
| 49 | Artificial di-iron proteins: solution characterization of four helix bundles containing two distinct types of inter-helical loops. Journal of Biological Inorganic Chemistry, 2005, 10, 539-549.                                     | 1.1 | 29        |
| 50 | Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions. Journal of Biological Inorganic Chemistry, 2010, 15, 717-728.                                                     | 1.1 | 29        |
| 51 | Femtosecond UV-laser pulses to unveil protein–protein interactions in living cells. Cellular and<br>Molecular Life Sciences, 2016, 73, 637-648.                                                                                      | 2.4 | 29        |
| 52 | Discovering protein secondary structures: classification and description of isolated alpha-turns.<br>Biopolymers, 1996, 38, 705-21.                                                                                                  | 1.2 | 28        |
| 53 | Rational Design of True Hirudin Mimetics:Â Synthesis and Characterization of Multisite-Directed<br>α-Thrombin Inhibitors1. Journal of Medicinal Chemistry, 1996, 39, 2008-2017.                                                      | 2.9 | 27        |
| 54 | Hemoprotein models based on a covalent helix-heme-helix sandwich. 3. Coordination properties, reactivity and catalytic application of Fe(III)- and Fe(II)-mimochrome I. Journal of Biological Inorganic Chemistry, 1998, 3, 671-681. | 1.1 | 27        |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Redox and Electrocatalytic Properties of Mimochrome VI, a Synthetic Heme Peptide Adsorbed on Gold.<br>Langmuir, 2010, 26, 17831-17835.                                                              | 1.6 | 27        |
| 56 | Mimochrome, a metalloporphyrinâ€based catalytic Swiss knifeâ€. Biotechnology and Applied<br>Biochemistry, 2020, 67, 495-515.                                                                        | 1.4 | 26        |
| 57 | ?-Alanine containing peptides: ?-Turns in cyclotetrapeptides. Biopolymers, 1993, 33, 621-631.                                                                                                       | 1.2 | 25        |
| 58 | Design and structure of a novel Neurokinin A receptor antagonist<br>cyclo(-Met1-Asp2-Trp3-Phe4-Dap5-Leu6-)cyclo(2β-5β). Journal of the Chemical Society Perkin Transactions<br>II, 1995, , 987-993. | 0.9 | 25        |
| 59 | From natural to synthetic multisite thrombin inhibitors. , 1999, 51, 19-39.                                                                                                                         |     | 24        |
| 60 | A FRET-based biosensor for NO detection. Journal of Inorganic Biochemistry, 2010, 104, 619-624.                                                                                                     | 1.5 | 24        |
| 61 | Mn-Mimochrome VI*a: An Artificial Metalloenzyme With Peroxygenase Activity. Frontiers in Chemistry, 2018, 6, 590.                                                                                   | 1.8 | 23        |
| 62 | ?-Alanine containing cyclic peptides with turned structure: The?pseudo type II ?-turn.? VI. Biopolymers, 1994, 34, 1517-1526.                                                                       | 1.2 | 22        |
| 63 | Miniaturized hemoproteins: design, synthesis and characterization of mimochrome II. Inorganica Chimica Acta, 1998, 275-276, 301-313.                                                                | 1.2 | 22        |
| 64 | Design and Characterization of a Peptide Mimotope of the HIV-1 gp120 Bridging Sheet. International<br>Journal of Molecular Sciences, 2012, 13, 5674-5699.                                           | 1.8 | 22        |
| 65 | Nano-in-Nano Approach for Enzyme Immobilization Based on Block Copolymers. ACS Applied Materials<br>& Interfaces, 2017, 9, 29318-29327.                                                             | 4.0 | 22        |
| 66 | Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence.<br>Sensors, 2020, 20, 3793.                                                                           | 2.1 | 22        |
| 67 | Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catalysis, 2021, 11, 9407-9417.                                                                          | 5.5 | 22        |
| 68 | Conformational rigidity versus flexibility in a novel peptidic neurokinin A receptor antagonist.<br>Journal of Peptide Science, 1995, 1, 236-240.                                                   | 0.8 | 21        |
| 69 | A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction. Sensors, 2017, 17, 2747.                                                                                         | 2.1 | 21        |
| 70 | Direct detection of organophosphate compounds in water by a fluorescence-based biosensing device.<br>Sensors and Actuators B: Chemical, 2018, 255, 3257-3266.                                       | 4.0 | 21        |
| 71 | A crystal structure with features of an antiparallel ?-pleated sheet. Biopolymers, 1994, 34, 1463-1468.                                                                                             | 1.2 | 20        |
| 72 | Solvent-mediated conformational transition in β-alanine containing cyclic peptides. VIII. , 1996, 38, 693-703.                                                                                      |     | 20        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A structural two-ring version of a tubular stack of?-rings in crystals of a cyclic D,L-hexapeptide.<br>Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 27-36.              | 1.6 | 19        |
| 74 | ?-Alanine containing cyclic peptides with predetermined turned structure. V. Biopolymers, 1994, 34, 1505-1515.                                                                                 | 1.2 | 19        |
| 75 | Conformational behaviour of Cα,α-diphenylglycine: foldedvs. extended structures in DφG-containing<br>tripeptides. Journal of Peptide Science, 1998, 4, 21-32.                                  | 0.8 | 19        |
| 76 | Conformational versatility of the <i>N</i> αâ€acylated tripeptide amide tail of oxytocin. International<br>Journal of Peptide and Protein Research, 1993, 42, 459-465.                         | 0.1 | 19        |
| 77 | Designing Covalently Linked Heterodimeric Four-Helix Bundles. Methods in Enzymology, 2016, 580, 471-499.                                                                                       | 0.4 | 19        |
| 78 | Mixed conformation in C?,?-disubstituted tripeptides: X-ray crystal structures of Z-Aib-Dph-Gly-Ome<br>and Bz-Dph-Dph-Gly-Ome. Biopolymers, 1994, 34, 1595-1604.                               | 1.2 | 18        |
| 79 | A Novel Rigid β-Turn Molecular Scaffold. Journal of the American Chemical Society, 1998, 120, 5879-5886.                                                                                       | 6.6 | 18        |
| 80 | Evaluation of the oligosaccharide composition of commercial follicle stimulating hormone preparations. Electrophoresis, 2013, 34, 2394-2406.                                                   | 1.3 | 18        |
| 81 | Spectroelectrochemistry of Fe <sup>III</sup> - and Co <sup>III</sup> -mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes. Chemical Communications, 2014, 50, 1894-1896. | 2.2 | 18        |
| 82 | Design of a Synthetic Receptor for the Calmodulin-Binding Domain of Calcineurin. Journal of the<br>American Chemical Society, 1997, 119, 12378-12379.                                          | 6.6 | 17        |
| 83 | Hirunorms are true hirudin mimetics. The crystal structure of human αâ€ŧhrombinâ€hirunorm V complex.<br>Protein Science, 1998, 7, 243-253.                                                     | 3.1 | 17        |
| 84 | A review of the design, synthesis and biological activity of the bicyclic hexapeptide tachykinin NK2<br>antagonist MEN 10627. Regulatory Peptides, 1996, 65, 55-59.                            | 1.9 | 16        |
| 85 | Inactivation of MSMEG_0412 gene drastically affects surface related properties of Mycobacterium smegmatis. BMC Microbiology, 2016, 16, 267.                                                    | 1.3 | 16        |
| 86 | Artificial Heme Enzymes for the Construction of Gold-Based Biomaterials. International Journal of<br>Molecular Sciences, 2018, 19, 2896.                                                       | 1.8 | 16        |
| 87 | Pt(II) complexes of amino acids and peptides. I. Structural analysis of trans-[Cl2Pt(L-HAlaOH)2].<br>Inorganica Chimica Acta, 1988, 153, 171-174.                                              | 1.2 | 15        |
| 88 | Unusual conformational preferences of β-alanine containing cyclic peptides. VII. Biopolymers, 1996, 38,<br>683-691.                                                                            | 1.2 | 15        |
| 89 | Spectroscopic and metal binding properties of a <i>de novo</i> metalloprotein binding a tetrazinc cluster. Biopolymers, 2018, 109, e23339.                                                     | 1.2 | 15        |
| 90 | Pt(II) complexes of amino acids and peptides III. X-ray diffraction study of [Cl(Ph3P)Pt(H-Aib-O)].<br>Inorganica Chimica Acta, 1993, 204, 87-92.                                              | 1.2 | 14        |

| #   | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Crystallization and preliminary X-ray diffraction studies of the carboxylesterase EST2 from<br>Alicyclobacillus acidocaldarius. Acta Crystallographica Section D: Biological Crystallography, 1999,<br>55, 1348-1349.                                                             | 2.5 | 14        |
| 92  | The crystal structure of Afc-containing peptides. Biopolymers, 2000, 53, 150-160.                                                                                                                                                                                                 | 1.2 | 14        |
| 93  | Crystal structure of an amphiphilic foldamer reveals a 48-mer assembly comprising a hollow truncated octahedron. Nature Communications, 2014, 5, 3581.                                                                                                                            | 5.8 | 14        |
| 94  | Artificial heme-proteins: determination of axial ligand orientations through paramagnetic NMR shifts.<br>Chemical Communications, 2014, 50, 3852-3855.                                                                                                                            | 2.2 | 14        |
| 95  | Unveiling the structure of a novel artificial hemeâ€enzyme with peroxidaseâ€like activity: A theoretical investigation. Biopolymers, 2018, 109, e23225.                                                                                                                           | 1.2 | 14        |
| 96  | The crystal structure of aDcp-containing peptide. Biopolymers, 2000, 53, 182-188.                                                                                                                                                                                                 | 1.2 | 12        |
| 97  | Conformational behavior of C?,?-diphenyl glycine: Extended conformation in tripeptides containing consecutive D?g residues. Biopolymers, 2000, 53, 161-168.                                                                                                                       | 1.2 | 11        |
| 98  | Conformational and coordination properties of a peptide containing the novel α,α-bis(2-pyridyl)glycine<br>amino acidElectronic supplementary information (ESI) available: Figs. 1S, 2S. See<br>http://www.rsc.org/suppdata/dt/b2/b209199b/. Dalton Transactions, 2003, , 787-792. | 1.6 | 11        |
| 99  | The crystal structure of αâ€ŧhrombinâ€hirunorm IV complex reveals a novel specificity site recognition mode. Protein Science, 1999, 8, 91-95.                                                                                                                                     | 3.1 | 11        |
| 100 | Fluorescent peptide dH3w: A sensor for environmental monitoring of mercury (II). PLoS ONE, 2018, 13, e0204164.                                                                                                                                                                    | 1.1 | 11        |
| 101 | A cobalt mimochrome for photochemical hydrogen evolution from neutral water. Journal of<br>Inorganic Biochemistry, 2022, 230, 111753.                                                                                                                                             | 1.5 | 11        |
| 102 | Pt(II) complexes of amino acids and peptides II. Structural analysis of trans-[Cl2-Pt-(H-Aib-OH)2n] and<br>trans-[Pt-(H-Aib-Oâ^')2]. Inorganica Chimica Acta, 1992, 196, 241-246.                                                                                                 | 1.2 | 10        |
| 103 | Conformational studies on peptides as enzyme inhibitors: chymotrypsin inhibitors using Bowman–Birk<br>type as models. Journal of the Chemical Society Perkin Transactions II, 1994, , 1047-1053.                                                                                  | 0.9 | 10        |
| 104 | Design of metal ion binding peptides. Biopolymers, 1995, 37, 401-410.                                                                                                                                                                                                             | 1.2 | 10        |
| 105 | Bicyclic peptides as type I/type II β-turn scaffolds. , 1998, 40, 505-518.                                                                                                                                                                                                        |     | 10        |
| 106 | A novel super-potent neurokinin A receptor antagonist containing dehydroalanine. Bioorganic and<br>Medicinal Chemistry Letters, 1998, 8, 1153-1156.                                                                                                                               | 1.0 | 10        |
| 107 | Similarities and differences for membranotropic action of three unnatural antimicrobial peptides.<br>Journal of Peptide Science, 2020, 26, e3270.                                                                                                                                 | 0.8 | 10        |
| 108 | Glucagon-independent renal hyperaemia and hyperfiltration after an oral protein load in Child A liver<br>cirrhosis. European Journal of Clinical Investigation, 1992, 22, 31-37.                                                                                                  | 1.7 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Oxidative dehalogenation of trichlorophenol catalyzed by a promiscuous artificial heme-enzyme. RSC<br>Advances, 2022, 12, 12947-12956.                                                                                                                                                                                                                                     | 1.7 | 9         |
| 110 | Conformation of diastereomeric peptide sequences: Structural analysis of Z-D-Val-Ac6c-Gly-L-Phe-OMe.<br>Biopolymers, 1992, 32, 1155-1161.                                                                                                                                                                                                                                  | 1.2 | 8         |
| 111 | Non coded C <sup>α,α</sup> â€disubstituted amino acids. International Journal of Peptide and Protein<br>Research, 1993, 41, 15-20.                                                                                                                                                                                                                                         | 0.1 | 8         |
| 112 | Simple structure, complex function. Nature Chemical Biology, 2015, 11, 760-761.                                                                                                                                                                                                                                                                                            | 3.9 | 8         |
| 113 | Clickable artificial hemeâ€peroxidases for the development of functional nanomaterials. Biotechnology<br>and Applied Biochemistry, 2020, 67, 549-562.                                                                                                                                                                                                                      | 1.4 | 8         |
| 114 | Sodium Bumetanide Trihydrate. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 395-398.                                                                                                                                                                                                                                                       | 0.4 | 7         |
| 115 | Conformation and structure of linear peptides with regularly alternating <scp>l</scp> ―and<br><scp>d</scp> ―esidues: structure of the blocked hexapeptide<br><i>tert</i> â€butyloxycarbonylâ€( <scp>d</scp> ―alloisoleucylâ€ <scp>l</scp> â€isoleucyl) <sub>3</sub> methyl<br>ester monohvdrate. International lournal of Peptide and Protein Research. 1995. 45. 100-105. | 0.1 | 7         |
| 116 | Identification of novel direct protein-protein interactions by irradiating living cells with femtosecond UV laser pulses. Biochemical and Biophysical Research Communications, 2017, 492, 67-73.                                                                                                                                                                           | 1.0 | 7         |
| 117 | Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts.<br>Chemical Communications, 2021, 57, 990-993.                                                                                                                                                                                                                       | 2.2 | 7         |
| 118 | Multiple binding mode of reversible synthetic thrombin inhibitors. A comparative structural analysis.<br>Biological Chemistry, 1998, 379, 987-1006.                                                                                                                                                                                                                        | 1.2 | 7         |
| 119 | First observation of a helical peptide containing chiral α-monosubstituted residues without a preferred screw sense. Journal of the Chemical Society Perkin Transactions II, 1992, , 971-977.                                                                                                                                                                              | 0.9 | 6         |
| 120 | Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. European Journal of<br>Inorganic Chemistry, 2015, 2015, 3352-3352.                                                                                                                                                                                                                          | 1.0 | 5         |
| 121 | A De Novo Heterodimeric Dueâ€Ferri Protein Minimizes the Release of Reactive Intermediates in<br>Dioxygenâ€Dependent Oxidation. Angewandte Chemie, 2017, 129, 15786-15786.                                                                                                                                                                                                 | 1.6 | 5         |
| 122 | Novel Retro-Inverso Peptide Antibiotic Efficiently Released by a Responsive Hydrogel-Based System.<br>Biomedicines, 2022, 10, 1301.                                                                                                                                                                                                                                        | 1.4 | 5         |
| 123 | Branched porphyrins as functional scaffolds for multisite bioconjugation. Biotechnology and Applied Biochemistry, 2015, 62, 383-392.                                                                                                                                                                                                                                       | 1.4 | 4         |
| 124 | A New potent and highly selective, long lasting, peptide based Neurokinin A antagonist: Rational design<br>of MEN 10627. , 1994, , 487-489.                                                                                                                                                                                                                                |     | 4         |
| 125 | Conformational versatility of the N alpha-acylated tripeptide amide tail of oxytocin. Synthesis and crystallographic characterization of three C2 alpha-backbone modified, conformationally restricted analogues. International Journal of Peptide and Protein Research, 1993, 42, 459-65.                                                                                 | 0.1 | 4         |
| 126 | Solvent-mediated conformational transition in beta-alanine containing cyclic peptides. VIII.<br>Biopolymers, 1996, 38, 693-703.                                                                                                                                                                                                                                            | 1.2 | 4         |

ANGELA LOMBARDI

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A Racemic Bicyclic Acylamidine from a Tripeptide Derivative. Acta Crystallographica Section C: Crystal<br>Structure Communications, 1996, 52, 1705-1708.                                          | 0.4 | 3         |
| 128 | Production of human pro-relaxin H2 in the yeast Pichia pastoris. BMC Biotechnology, 2017, 17, 4.                                                                                                  | 1.7 | 3         |
| 129 | Active targeting of cancer cells by CD44 binding peptide-functionalized oil core-based nanocapsules.<br>RSC Advances, 2021, 11, 24487-24499.                                                      | 1.7 | 3         |
| 130 | Unravelling the Structure of the Tetrahedral Metal-Binding Site in METP3 through an Experimental and Computational Approach. Molecules, 2021, 26, 5221.                                           | 1.7 | 2         |
| 131 | Miniaturized hemoproteins. Biopolymers, 1998, 47, 5-22.                                                                                                                                           | 1.2 | 2         |
| 132 | Conformational behaviour of C(alpha,alpha)-diphenylglycine: folded vs. extended structures in DphiG-containing tripeptides. Journal of Peptide Science, 1998, 4, 21-32.                           | 0.8 | 2         |
| 133 | Neuronorm is a potent and water soluble neurokinin A receptor antagonist. Bioorganic and Medicinal<br>Chemistry Letters, 1998, 8, 1735-1740.                                                      | 1.0 | 1         |
| 134 | Symmetry in Synthetic and Natural Peptides. , 1990, , 1-14.                                                                                                                                       |     | 1         |
| 135 | Structural requirements for antagonist activity at tachykinin NK2 receptor in a series of bicyclic hexapeptides. , 1995, , 591-592.                                                               |     | 1         |
| 136 | Vincenzo Pavone: Friend, mentor and inspiring scientist. Biopolymers, 2018, 109, e23234.                                                                                                          | 1.2 | 0         |
| 137 | Special issue (67:4): Synthetic and engineered enzymes for biocatalysis and biotransformation.<br>Biotechnology and Applied Biochemistry, 2020, 67, 461-462.                                      | 1.4 | Ο         |
| 138 | Conformational behavior of Cα,α-diphenyl glycine: Extended conformation in tripeptides containing<br>consecutive Dφg residues. Biopolymers, 2000, 53, 161.                                        | 1.2 | 0         |
| 139 | Molecular tools for the design of $\hat{I}^3$ -turn in peptides. , 1992, , 366-367.                                                                                                               |     | 0         |
| 140 | Developing synthetic hemoprotein mimetics: Design, synthesis and characterization of heme-peptide conjugates. , 2002, , 91-93.                                                                    |     | 0         |
| 141 | Non coded C alpha, alpha-disubstituted amino acids. X-ray diffraction analysis of a dipeptide containing (S)-alpha-methylserine. International Journal of Peptide and Protein Research, 1993, 41, | 0.1 | 0         |