Israel Rubinstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3359460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Empowering Electroless Plating to Produce Silver Nanoparticle Films for DNA Biosensing Using Localized Surface Plasmon Resonance Spectroscopy. ACS Applied Bio Materials, 2019, 2, 856-864.	4.6	17
2	Expanding the boundaries of metal deposition: High aspect ratio silver nanoplatelets created by merging nanobelts. Electrochimica Acta, 2018, 264, 233-243.	5.2	16
3	Nucleation ontrolled Solution Deposition of Silver Nanoplate Architectures for Facile Derivatization and Catalytic Applications. Advanced Materials, 2018, 30, e1805179.	21.0	23
4	Highly Sensitive Colorimetric Detection of Early Stage Aluminum Corrosion in Water Using Plasmonic Gold Nanoparticle Films. Advanced Optical Materials, 2018, 6, 1800599.	7.3	7
5	Application of Surface Click Reactions to Localized Surface Plasmon Resonance (LSPR) Biosensing. Chemistry - A European Journal, 2017, 23, 10148-10155.	3.3	10
6	Template-Free Electroless Plating of Gold Nanowires: Direct Surface Functionalization with Shape-Selective Nanostructures for Electrochemical Applications. ACS Applied Materials & Interfaces, 2017, 9, 31142-31152.	8.0	29
7	Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles. Nanoscale, 2017, 9, 12573-12589.	5.6	36
8	A General Kinetic-Optical Model for Solid-State Reactions Involving the Nano Kirkendall Effect. The Case of Copper Nanoparticle Oxidation. Journal of Physical Chemistry C, 2016, 120, 16140-16152.	3.1	19
9	pHâ€Dependent Galvanic Replacement of Supported and Colloidal Cu ₂ O Nanocrystals with Gold and Palladium. Small, 2015, 11, 3942-3953.	10.0	22
10	Critical Issues in Localized Plasmon Sensing. Journal of Physical Chemistry C, 2014, 118, 8227-8244.	3.1	61
11	Chemical Deposition of Cu ₂ O Nanocrystals with Precise Morphology Control. ACS Nano, 2014, 8, 162-174.	14.6	140
12	Distance-dependent fluorescence of tris(bipyridine)ruthenium(<scp>ii</scp>) on supported plasmonic gold nanoparticle ensembles. Nanoscale, 2014, 6, 15134-15143.	5.6	14
13	Direct Observation of Aminoglycoside–RNA Binding by Localized Surface Plasmon Resonance Spectroscopy. Analytical Chemistry, 2013, 85, 2200-2207.	6.5	21
14	Stabilization of Metal Nanoparticle Films on Glass Surfaces Using Ultrathin Silica Coating. Analytical Chemistry, 2013, 85, 10022-10027.	6.5	22
15	Solid-State Thermal Dewetting of Just-Percolated Gold Films Evaporated on Glass: Development of the Morphology and Optical Properties. Journal of Physical Chemistry C, 2013, 117, 11337-11346.	3.1	88
16	Mechanism of morphology transformation during annealing of nanostructured gold films on glass. Physical Chemistry Chemical Physics, 2013, 15, 4656.	2.8	44
17	Localized Surface Plasmon Resonance (LSPR) Transducers Based on Random Evaporated Gold Island Films: Properties and Sensing Applications. , 2012, , 333-368.		10
18	Oscillatory Behavior of the Long-Range Response of Localized Surface Plasmon Resonance Transducers. Journal of Physical Chemistry C, 2012, 116, 26865-26873.	3.1	9

ISRAEL RUBINSTEIN

#	Article	IF	CITATIONS
19	Comparative assessment of the sensitivity of localized surface plasmon resonance transducers and interferenceâ€based Fabryâ€Pérot transducers. Annalen Der Physik, 2012, 524, 713-722.	2.4	6
20	Optimization of Localized Surface Plasmon Resonance Transducers for Studying Carbohydrate–Protein Interactions. Analytical Chemistry, 2012, 84, 232-240.	6.5	83
21	Chemical Deposition and Stabilization of Plasmonic Copper Nanoparticle Films on Transparent Substrates. Chemistry of Materials, 2012, 24, 2501-2508.	6.7	83
22	Improved Sensitivity of Localized Surface Plasmon Resonance Transducers Using Reflection Measurements. Journal of Physical Chemistry Letters, 2011, 2, 1223-1226.	4.6	29
23	Tunable Localized Plasmon Transducers Prepared by Thermal Dewetting of Percolated Evaporated Gold Films. Journal of Physical Chemistry C, 2011, 115, 24642-24652.	3.1	114
24	Stabilization of Gold Nanoparticle Films on Glass by Thermal Embedding. ACS Applied Materials & Interfaces, 2011, 3, 978-987.	8.0	81
25	Sensitivity and Optimization of Localized Surface Plasmon Resonance Transducers. ACS Nano, 2011, 5, 748-760.	14.6	155
26	A Quantitative, Realâ€Time Assessment of Binding of Peptides and Proteins to Gold Surfaces. Chemistry - A European Journal, 2011, 17, 1327-1336.	3.3	35
27	Selfâ€Assembly of Nanostructures on Surfaces Using Metal–Organic Coordination. Israel Journal of Chemistry, 2010, 50, 333-346.	2.3	10
28	On the formation mechanism of metal nanoparticle nanotubes. Thin Solid Films, 2010, 518, 1661-1666.	1.8	6
29	Morphology and Refractive Index Sensitivity of Gold Island Films. Chemistry of Materials, 2009, 21, 5875-5885.	6.7	124
30	Mass Thickness Analysis of Gold Thin Films Using Room Temperature Gas-Phase Chlorination. Analytical Chemistry, 2009, 81, 2877-2883.	6.5	4
31	Thirdâ€Order Nonlinear Optical Response of Goldâ€ I sland Films. Advanced Functional Materials, 2008, 18, 1281-1289.	14.9	39
32	Highly Stable Localized Plasmon Transducers Obtained by Thermal Embedding of Gold Island Films on Glass. Advanced Materials, 2008, 20, 3893-3899.	21.0	98
33	Biological Sensing and Interface Design in Gold Island Film Based Localized Plasmon Transducers. Analytical Chemistry, 2008, 80, 7487-7498.	6.5	100
34	Polymer-Coated Gold Island Films as Localized Plasmon Transducers for Gas Sensing. Journal of Physical Chemistry B, 2008, 112, 14530-14538.	2.6	64
35	Laterally Controlled Template Electrodeposition of Polyaniline. Israel Journal of Chemistry, 2008, 48, 359-366.	2.3	11
36	Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing. Journal of the American Chemical Society, 2007, 129, 84-92.	13.7	136

ISRAEL RUBINSTEIN

#	Article	IF	CITATIONS
37	Divergent Growth of Coordination Dendrimers on Surfaces. Journal of the American Chemical Society, 2006, 128, 8341-8349.	13.7	55
38	Reversible Binding of Gold Nanoparticles to Polymeric Solid Supports. Chemistry of Materials, 2006, 18, 1247-1260.	6.7	12
39	Assembly of Coordination Nanostructures via Ligand Derivatization of Oxide Surfaces. Langmuir, 2006, 22, 2130-2135.	3.5	25
40	Au–Pd Alloy Gradients Prepared by Laterally Controlled Template Synthesis. Advanced Functional Materials, 2006, 16, 693-698.	14.9	16
41	Preparative Manipulation of Gold Nanoparticles by Reversible Binding to a Polymeric Solid Support. Chemistry - A European Journal, 2005, 11, 2836-2841.	3.3	13
42	Sensitivity of Transmission Surface Plasmon Resonance (T-SPR) Spectroscopy: Self-Assembled Multilayers on Evaporated Gold Island Films. Chemistry - A European Journal, 2005, 11, 5555-5562.	3.3	59
43	Branched Coordination Multilayers on Gold. Journal of the American Chemical Society, 2005, 127, 17877-17887.	13.7	72
44	Coordination-Based Gold Nanoparticle Layers. Journal of the American Chemical Society, 2005, 127, 9207-9215.	13.7	100
45	Template Synthesis of Nanotubes by Room-Temperature Coalescence of Metal Nanoparticles. Chemistry of Materials, 2005, 17, 3743-3748.	6.7	79
46	Improved blocking properties of short-chain alkanethiol monolayers self-assembled on gold. Israel Journal of Chemistry, 2005, 45, 337-344.	2.3	11
47	Nanoparticle Nanotubes ChemInform, 2004, 35, no.	0.0	0
48	Layer-by-Layer Assembly of Ordinary and Composite Coordination Multilayers. Langmuir, 2004, 20, 10727-10733.	3.5	37
49	Widely-Applicable Gold Substrate for the Study of Ultrathin Overlayers. Journal of the American Chemical Society, 2004, 126, 5569-5576.	13.7	60
50	Biological Sensing Using Transmission Surface Plasmon Resonance Spectroscopy. Langmuir, 2004, 20, 7365-7367.	3.5	109
51	Ultrathin Gold Island Films on Silanized Glass. Morphology and Optical Properties. Chemistry of Materials, 2004, 16, 3476-3483.	6.7	193
52	Nanoparticle Nanotubes. Angewandte Chemie - International Edition, 2003, 42, 5576-5579.	13.8	174
53	A Composite GoldSilicon Oxide Surface for Mesoscopic Patterning. Journal of Physical Chemistry B, 2003, 107, 5540-5546.	2.6	14
54	Preparation of Graded Materials by Laterally Controlled Template Synthesis. Journal of the American Chemical Society, 2003, 125, 4718-4719.	13.7	35

ISRAEL RUBINSTEIN

#	Article	IF	CITATIONS
55	Transmission Surface-Plasmon Resonance (T-SPR) Measurements for Monitoring Adsorption on Ultrathin Gold Island Films. Chemistry - A European Journal, 2002, 8, 3849-3857.	3.3	107
56	Differential Plasmon Spectroscopy as a Tool for Monitoring Molecular Binding to Ultrathin Gold Films. Journal of the American Chemical Society, 2001, 123, 3177-3178.	13.7	92
57	Underpotential deposition of copper in acetonitrile. Journal of Electroanalytical Chemistry, 2000, 491, 87-94.	3.8	12
58	Controlled surface charging as a depth-profiling probe for mesoscopic layers. Nature, 2000, 406, 382-385.	27.8	143
59	UV/Vis Spectroscopy of Metalloporphyrin and Metallophthalocyanine Monolayers Self-Assembled on Ultrathin Gold Films. Journal of Physical Chemistry B, 2000, 104, 8238-8244.	2.6	148
60	A Metal-Ion Coordinated Hybrid Multilayer. Langmuir, 2000, 16, 4420-4423.	3.5	48
61	Coordination-Based Symmetric and Asymmetric Bilayers on Gold Surfaces. Chemistry - A European Journal, 1998, 4, 502-507.	3.3	40
62	Coordination-Controlled Self-Assembled Multilayers on Gold. Journal of the American Chemical Society, 1998, 120, 13469-13477.	13.7	102
63	Self-Assembled Monolayers on Oxidized Metals. 2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation. Langmuir, 1998, 14, 1116-1121.	3.5	224
64	Biomimetic Ionâ€binding Monolayers on Gold and Their Characterization by ACâ€Impedance Spectroscopy. Chemistry - A European Journal, 1996, 2, 759-766.	3.3	42
65	Alkanethiol Monolayers on Preoxidized Gold. Encapsulation of Gold Oxide under an Organic Monolayer. Langmuir, 1994, 10, 4566-4573.	3.5	154
66	Thioaromatic monolayers on gold: a new family of self-assembling monolayers. Langmuir, 1993, 9, 2974-2981.	3.5	436
67	Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir, 1993, 9, 3660-3667.	3.5	396
68	Vacuum-deposited gold films. Surface Science, 1992, 264, 312-326.	1.9	168
69	Ion-selective monolayer membranes based upon self-assembling tetradentate ligand monolayers on gold electrodes. 3. Application as selective ion sensors. Langmuir, 1992, 8, 1183-1187.	3.5	90
70	Ion-selective monolayer membranes based upon self-assembling tetradentate ligand monolayers on gold electrodes. 2. Effect of applied potential on ion binding. Journal of the American Chemical Society, 1991, 113, 5176-5182.	13.7	120
71	Selective action of artificial membranes. Nature, 1989, 337, 217-217.	27.8	24
72	lonic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature, 1988, 332, 426-429.	27.8	345

#	Article	IF	CITATIONS
73	Organized self-assembling monolayers on electrodes. 2. Monolayer-based ultramicroelectrodes for the study of very rapid electrode kinetics. The Journal of Physical Chemistry, 1987, 91, 6663-6669.	2.9	482