
Maria De Angelis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Controversial Role of Human Gut Lachnospiraceae. Microorganisms, 2020, 8, 573.	3.6	777
2	Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE, 2013, 8, e76993.	2.5	640
3	Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 2016, 80, 837-890.	6.6	487
4	Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology, 2013, 33, 1-10.	4.2	471
5	Environmental stress responses in Lactobacillus : A review. Proteomics, 2004, 4, 106-122.	2.2	353
6	How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 2014, 37, 30-40.	4.2	291
7	Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Applied and Environmental Microbiology, 2002, 68, 623-633.	3.1	256
8	Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiology, 2011, 11, 219.	3.3	251
9	Phytase activity in sourdough lactic acid bacteria: purification and characterization of a phytase from Lactobacillus sanfranciscensis CB1. International Journal of Food Microbiology, 2003, 87, 259-270.	4.7	242
10	Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 2004, 70, 1088-1096.	3.1	236
11	Autism spectrum disorders and intestinal microbiota. Gut Microbes, 2015, 6, 207-213.	9.8	231
12	Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host and Microbe, 2019, 25, 444-453.e3.	11.0	229
13	Effect of sourdough fermentation on stabilisation, and chemical and nutritional characteristics of wheat germ. Food Chemistry, 2010, 119, 1079-1089.	8.2	227
14	Ecological parameters influencing microbial diversity and stability of traditional sourdough. International Journal of Food Microbiology, 2014, 171, 136-146.	4.7	227
15	Novel insights on the functional/nutritional features of the sourdough fermentation. International Journal of Food Microbiology, 2019, 302, 103-113.	4.7	225
16	Highly Efficient Gluten Degradation by Lactobacilli and Fungal Proteases during Food Processing: New Perspectives for Celiac Disease. Applied and Environmental Microbiology, 2007, 73, 4499-4507.	3.1	217
17	Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 2022, 23, 1105.	4.1	215
18	VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue probiotics and gluten intolerance. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 80-93.	3.8	197

#	Article	IF	CITATIONS
19	Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Research in Microbiology, 2006, 157, 792-801.	2.1	187
20	Microbiota and Metabolome Associated with Immunoglobulin A Nephropathy (IgAN). PLoS ONE, 2014, 9, e99006.	2.5	185
21	Lactic Acid Bacterium and Yeast Microbiotas of 19 Sourdoughs Used for Traditional/Typical Italian Breads: Interactions between Ingredients and Microbial Species Diversity. Applied and Environmental Microbiology, 2012, 78, 1251-1264.	3.1	182
22	Pros and cons for using non-starter lactic acid bacteria (NSLAB) as secondary/adjunct starters for cheese ripening. Trends in Food Science and Technology, 2015, 45, 167-178.	15.1	160
23	Study of Adhesion and Survival of Lactobacilli and Bifidobacteria on Table Olives with the Aim of Formulating a New Probiotic Food. Applied and Environmental Microbiology, 2005, 71, 4233-4240.	3.1	159
24	Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices. International Journal of Food Microbiology, 2009, 128, 473-483.	4.7	157
25	Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. International Journal of Food Microbiology, 2014, 180, 78-87.	4.7	142
26	Heat Shock Response in Lactobacillus plantarum. Applied and Environmental Microbiology, 2004, 70, 1336-1346.	3.1	141
27	Glucan and Fructan Production by Sourdough <i>Weissella cibaria</i> and <i>Lactobacillus plantarum</i> . Journal of Agricultural and Food Chemistry, 2006, 54, 9873-9881.	5.2	141
28	Synthesis of Î ³ -aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Applied Microbiology and Biotechnology, 2010, 86, 731-741.	3.6	140
29	The lactic acid bacteria and yeast microbiota of eighteen sourdoughs used for the manufacture of traditional Italian sweet leavened baked goods. International Journal of Food Microbiology, 2013, 163, 71-79.	4.7	134
30	Different Fecal Microbiotas and Volatile Organic Compounds in Treated and Untreated Children with Celiac Disease. Applied and Environmental Microbiology, 2009, 75, 3963-3971.	3.1	131
31	Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. International Journal of Food Microbiology, 2016, 239, 3-18.	4.7	131
32	Effect of lactose on gut microbiota and metabolome of infants with cow's milk allergy. Pediatric Allergy and Immunology, 2012, 23, 420-427.	2.6	130
33	Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 2011, 28, 1062-1071.	4.2	128
34	Sourdough lactobacilli and celiac disease. Food Microbiology, 2007, 24, 187-196.	4.2	125
35	Taxonomic Structure and Monitoring of the Dominant Population of Lactic Acid Bacteria during Wheat Flour Sourdough Type I Propagation Using <i>Lactobacillus sanfranciscensis</i> Starters. Applied and Environmental Microbiology, 2009, 75, 1099-1109.	3.1	125
36	House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiology, 2015, 52, 66-76.	4.2	125

#	Article	IF	CITATIONS
37	Robustness of Lactobacillus plantarum starters during daily propagation of wheat flour sourdough type I. Food Microbiology, 2010, 27, 897-908.	4.2	123
38	Influence of Artisan Bakery- or Laboratory-Propagated Sourdoughs on the Diversity of Lactic Acid Bacterium and Yeast Microbiotas. Applied and Environmental Microbiology, 2012, 78, 5328-5340.	3.1	120
39	Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome. Applied and Environmental Microbiology, 2015, 81, 7945-7956.	3.1	120
40	The acid-stress response in Lactobacillus sanfranciscensis CB1. Microbiology (United Kingdom), 2001, 147, 1863-1873.	1.8	119
41	Selection and use of autochthonous mixed starter for lactic acid fermentation of carrots, French beans or marrows. International Journal of Food Microbiology, 2008, 127, 220-228.	4.7	119
42	Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. International Journal of Food Microbiology, 2015, 215, 161-170.	4.7	115
43	Diet influences the functions of the human intestinal microbiome. Scientific Reports, 2020, 10, 4247.	3.3	115
44	Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends in Food Science and Technology, 2018, 78, 244-254.	15.1	114
45	Arginine Catabolism by Sourdough Lactic Acid Bacteria: Purification and Characterization of the Arginine Deiminase Pathway Enzymes from Lactobacillus sanfranciscensis CB1. Applied and Environmental Microbiology, 2002, 68, 6193-6201.	3.1	113
46	Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle. Applied and Environmental Microbiology, 2015, 81, 6736-6748.	3.1	106
47	Safety for Patients With Celiac Disease of Baked Goods Made of Wheat Flour Hydrolyzed During Food Processing. Clinical Gastroenterology and Hepatology, 2011, 9, 24-29.	4.4	103
48	Hydroxycinnamic Acids Used as External Acceptors of Electrons: an Energetic Advantage for Strictly Heterofermentative Lactic Acid Bacteria. Applied and Environmental Microbiology, 2014, 80, 7574-7582.	3.1	98
49	The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings. Journal of Maternal-Fetal and Neonatal Medicine, 2014, 27, 46-52.	1.5	98
50	Use of Selected Sourdough Strains of Lactobacillus for Removing Gluten and Enhancing the Nutritional Properties of Gluten-Free Bread. Journal of Food Protection, 2008, 71, 1491-1495.	1.7	93
51	Mechanism of Degradation of Immunogenic Gluten Epitopes from <i>Triticum turgidum</i> L. var. <i>durum</i> by Sourdough Lactobacilli and Fungal Proteases. Applied and Environmental Microbiology, 2010, 76, 508-518.	3.1	93
52	Salivary Microbiota and Metabolome Associated with Celiac Disease. Applied and Environmental Microbiology, 2014, 80, 3416-3425.	3.1	93
53	Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. Journal of Clinical Medicine, 2020, 9, 2648.	2.4	93
54	Microbiota and metabolome of un-started and started Greek-type fermentation of Bella di Cerignola table olives. Food Microbiology, 2015, 52, 18-30.	4.2	91

4

#	Article	IF	CITATIONS
55	Clinical and Microbiological Effect of a Multispecies Probiotic Supplementation in Celiac Patients With Persistent IBS-type Symptoms. Journal of Clinical Gastroenterology, 2019, 53, e117-e125.	2.2	91
56	Long-Term Fungal Inhibitory Activity of Water-Soluble Extracts of <i>Phaseolus vulgaris</i> cv. Pinto and Sourdough Lactic Acid Bacteria during Bread Storage. Applied and Environmental Microbiology, 2008, 74, 7391-7398.	3.1	89
57	Combined Dietary Anthocyanins, Flavonols, and Stilbenoids Alleviate Inflammatory Bowel Disease Symptoms in Mice. Frontiers in Nutrition, 2017, 4, 75.	3.7	89
58	Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiology, 2016, 54, 115-126.	4.2	86
59	Diversity of the Lactic Acid Bacterium and Yeast Microbiota in the Switch from Firm- to Liquid-Sourdough Fermentation. Applied and Environmental Microbiology, 2014, 80, 3161-3172.	3.1	84
60	Use of sourdough lactobacilli and oat fibre to decrease the glycaemic index of white wheat bread. British Journal of Nutrition, 2007, 98, 1196-1205.	2.3	83
61	Glutenâ€free Sourdough Wheat Baked Goods Appear Safe for Young Celiac Patients: A Pilot Study. Journal of Pediatric Gastroenterology and Nutrition, 2010, 51, 777-783.	1.8	82
62	Fermentation and proteome profiles of Lactobacillus plantarum strains during growth under food-like conditions. Journal of Proteomics, 2014, 96, 366-380.	2.4	82
63	Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study). Journal of Clinical Medicine, 2019, 8, 1424.	2.4	81
64	Fermentation by selected sourdough lactic acid bacteria to decrease coeliac intolerance to rye flour. Journal of Cereal Science, 2006, 43, 301-314.	3.7	80
65	Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients, 2019, 11, 886.	4.1	79
66	Fecal Microbiota in Healthy Subjects Following Omnivore, Vegetarian and Vegan Diets: Culturable Populations and rRNA DGGE Profiling. PLoS ONE, 2015, 10, e0128669.	2.5	78
67	What Would You Like to Eat, Mr CKD Microbiota? A Mediterranean Diet, please!. Kidney and Blood Pressure Research, 2014, 39, 114-123.	2.0	77
68	How to improve the gluten-free diet: The state of the art from a food science perspective. Food Research International, 2018, 110, 22-32.	6.2	74
69	Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus. PLoS ONE, 2014, 9, e107232.	2.5	74
70	The Food-gut Human Axis: The Effects of Diet on Gut Microbiota and Metabolome. Current Medicinal Chemistry, 2019, 26, 3567-3583.	2.4	74
71	Comparison of the compositional, microbiological, biochemical and volatile profile characteristics of three Italian PDO fermented sausages. Meat Science, 2008, 79, 224-235.	5.5	73
72	Proteomics of the bacterial cross-talk by quorum sensing. Journal of Proteomics, 2011, 74, 19-34.	2.4	73

#	Article	IF	CITATIONS
73	Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines, 2022, 10, 83.	3.2	71
74	Microbial Ecology Dynamics Reveal a Succession in the Core Microbiota Involved in the Ripening of Pasta Filata Caciocavallo Pugliese Cheese. Applied and Environmental Microbiology, 2014, 80, 6243-6255.	3.1	69
75	Pasta Made from Durum Wheat Semolina Fermented with Selected Lactobacilli as a Tool for a Potential Decrease of the Gluten Intolerance. Journal of Agricultural and Food Chemistry, 2005, 53, 4393-4402.	5.2	68
76	Organic Cultivation of Triticum turgidum subsp. durum Is Reflected in the Flour-Sourdough Fermentation-Bread Axis. Applied and Environmental Microbiology, 2015, 81, 3192-3204.	3.1	68
77	Sourdough Fermented Breads are More Digestible than Those Started with Baker's Yeast Alone: An In Vivo Challenge Dissecting Distinct Gastrointestinal Responses. Nutrients, 2019, 11, 2954.	4.1	68
78	Quorum sensing in sourdough <i>Lactobacillus plantarum</i> DC400: Induction of plantaricin A (PlnA) under coâ€cultivation with other lactic acid bacteria and effect of PlnA on bacterial and Cacoâ€2 cells. Proteomics, 2010, 10, 2175-2190.	2.2	67
79	The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Critical Reviews in Food Science and Nutrition, 2020, 60, 2158-2173.	10.3	67
80	Uses of mares' milk in manufacture of fermented milks. International Dairy Journal, 2004, 14, 767-775.	3.0	66
81	Use of autochthonous starters to ferment red and yellow peppers (Capsicum annum L.) to be stored at room temperature. International Journal of Food Microbiology, 2009, 130, 108-116.	4.7	66
82	Lactic Acid Fermentation of Cactus Cladodes (Opuntia ficus-indica L.) Generates Flavonoid Derivatives with Antioxidant and Anti-Inflammatory Properties. PLoS ONE, 2016, 11, e0152575.	2.5	66
83	The Role of Diet in the Pathogenesis of Cholesterol Gallstones. Current Medicinal Chemistry, 2019, 26, 3620-3638.	2.4	66
84	Study of the effects of temperature, pH, NaCl, and aw on the proteolytic and lipolytic activities of cheese-related lactic acid bacteria by quadratic response surface methodology. Enzyme and Microbial Technology, 1999, 25, 795-809.	3.2	65
85	FoodMicrobionet: A database for the visualisation and exploration of food bacterial communities based on network analysis. International Journal of Food Microbiology, 2016, 219, 28-37.	4.7	65
86	Functional proteomics within the genus <i>Lactobacillus</i> . Proteomics, 2016, 16, 946-962.	2.2	64
87	A Few Pseudomonas Oligotypes Dominate in the Meat and Dairy Processing Environment. Frontiers in Microbiology, 2017, 8, 264.	3.5	64
88	Effects of <i>Bifidobacterium longum</i> BB536 and <i>Lactobacillus rhamnosus</i> HN001 in IBS patients. European Journal of Clinical Investigation, 2020, 50, e13201.	3.4	64
89	Molecular adaptation of sourdough Lactobacillus plantarum DC400 under co-cultivation with other lactobacilli. Research in Microbiology, 2009, 160, 358-366.	2.1	56
90	Selection and use of autochthonous multiple strain cultures for the manufacture of high-moisture traditional Mozzarella cheese. International Journal of Food Microbiology, 2008, 125, 123-132.	4.7	55

#	Article	IF	CITATIONS
91	Metabolic and proteomic adaptation of <i><scp>L</scp>actobacillus rhamnosus</i> strains during growth under cheeseâ€ike environmental conditions compared to de <scp>M</scp> an, <scp>R</scp> ogosa, and <scp>S</scp> harpe medium. Proteomics, 2012, 12, 3206-3218.	2.2	54
92	Beta-Glucans Supplementation Associates with Reduction in P-Cresyl Sulfate Levels and Improved Endothelial Vascular Reactivity in Healthy Individuals. PLoS ONE, 2017, 12, e0169635.	2.5	54
93	Long-term fungal inhibitory activity of water-soluble extract from Amaranthus spp. seeds during storage of gluten-free and wheat flour breads. International Journal of Food Microbiology, 2009, 131, 189-196.	4.7	49
94	Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn's Disease: A Systematic Review. Nutrients, 2017, 9, 832.	4.1	49
95	Probiotics in Celiac Disease. Nutrients, 2018, 10, 1824.	4.1	49
96	Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy. European Food Research and Technology, 2006, 223, 405-411.	3.3	48
97	Response of Lactobacillus helveticus PR4 to Heat Stress during Propagation in Cheese Whey with a Gradient of Decreasing Temperatures. Applied and Environmental Microbiology, 2006, 72, 4503-4514.	3.1	48
98	Added ingredients affect the microbiota and biochemical characteristics of durum wheat type-I sourdough. Food Microbiology, 2016, 60, 112-123.	4.2	48
99	Spatial Distribution of the Metabolically Active Microbiota within Italian PDO Ewes' Milk Cheeses. PLoS ONE, 2016, 11, e0153213.	2.5	48
100	Cell–cell communication in sourdough lactic acid bacteria: A proteomic study in <i>Lactobacillus sanfranciscensis</i> CB1. Proteomics, 2007, 7, 2430-2446.	2.2	47
101	Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese. Applied and Environmental Microbiology, 2014, 80, 4085-4094.	3.1	47
102	Salivary Microbiota Associated with Immunoglobulin A Nephropathy. Microbial Ecology, 2015, 70, 557-565.	2.8	47
103	Selected Probiotic Lactobacilli Have the Capacity To Hydrolyze Gluten Peptides during Simulated Gastrointestinal Digestion. Applied and Environmental Microbiology, 2017, 83, .	3.1	46
104	Comparative proteomic analysis of biofilm and planktonic cells of <i>Lactobacillus plantarum</i> DB200. Proteomics, 2015, 15, 2244-2257.	2.2	45
105	Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiology, 2018, 70, 162-171.	4.2	45
106	Study of the effects of temperature, pH and NaCl on the peptidase activities of non-starter lactic acid bacteria (NSLAB) by quadratic response surface methodology. International Dairy Journal, 1999, 9, 865-875.	3.0	44
107	Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chemistry, 2021, 355, 129638.	8.2	44
108	Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016. Journal of Microbiology and Biotechnology, 2015, 25, 893-902.	2.1	42

#	Article	IF	CITATIONS
109	Lactobacillus reuteri DSM 20016: purification and characterization of a cystathionine Î ³ -Iyase and use as adjunct starter in cheesemaking. Journal of Dairy Research, 2002, 69, 255-267.	1.4	41
110	Exploitation of grape marc as functional substrate for lactic acid bacteria and bifidobacteria growth and enhanced antioxidant activity. Food Microbiology, 2017, 65, 25-35.	4.2	41
111	Different Flour Microbial Communities Drive to Sourdoughs Characterized by Diverse Bacterial Strains and Free Amino Acid Profiles. Frontiers in Microbiology, 2016, 7, 1770.	3.5	40
112	Fermentation of Nocellara Etnea Table Olives by Functional Starter Cultures at Different Low Salt Concentrations. Frontiers in Microbiology, 2018, 9, 1125.	3.5	40
113	A Bronze-Tomato Enriched Diet Affects the Intestinal Microbiome under Homeostatic and Inflammatory Conditions. Nutrients, 2018, 10, 1862.	4.1	39
114	Survival and persistence of Lactobacillus plantarum 4.1 and Lactobacillus reuteri 3S7 in the gastrointestinal tract of pigs. Veterinary Microbiology, 2007, 123, 133-144.	1.9	38
115	Microbial cell-free extracts affect the biochemical characteristics and sensorial quality of sourdough bread. Food Chemistry, 2017, 237, 159-168.	8.2	38
116	Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT - Food Science and Technology, 2019, 114, 108394.	5.2	37
117	Plantaricin A synthesized by Lactobacillus plantarum induces in vitro proliferation and migration of human keratinocytes and increases the expression of TGF-β1, FGF7, VEGF-A and IL-8 genes. Peptides, 2011, 32, 1815-1824.	2.4	36
118	Exploring the Microbiota of Faba Bean: Functional Characterization of Lactic Acid Bacteria. Frontiers in Microbiology, 2017, 8, 2461.	3.5	36
119	Wholemeal wheat flours drive the microbiome and functional features of wheat sourdoughs. International Journal of Food Microbiology, 2019, 302, 35-46.	4.7	36
120	Use of autochthonous mesophilic lactic acid bacteria as starter cultures for making Pecorino Crotonese cheese: Effect on compositional, microbiological and biochemical attributes. Food Research International, 2019, 116, 1344-1356.	6.2	35
121	Effects of olive leaf extract addition on fermentative and oxidative processes of table olives and their nutritional properties. Food Research International, 2019, 116, 1306-1317.	6.2	35
122	A Specific Mutation in Muc2 Determines Early Dysbiosis in Colitis-Prone Winnie Mice. Inflammatory Bowel Diseases, 2020, 26, 546-556.	1.9	35
123	A selective medium for isolation and accurate enumeration of Lactobacillus casei-group members in probiotic milks and dairy products. International Dairy Journal, 2015, 47, 27-36.	3.0	34
124	Transcriptional reprogramming and phenotypic switching associated with the adaptation of Lactobacillus plantarum C2 to plant niches. Scientific Reports, 2016, 6, 27392.	3.3	34
125	How <i>Lactobacillus plantarum</i> shapes its transcriptome in response to contrasting habitats. Environmental Microbiology, 2018, 20, 3700-3716.	3.8	33
126	Probiotic Preparation Has the Capacity To Hydrolyze Proteins Responsible for Wheat Allergy. Journal of Food Protection, 2007, 70, 135-144.	1.7	32

#	Article	IF	CITATIONS
127	Proteomic Analysis by Two-Dimensional Gel Electrophoresis and Starch Characterization of Triticum turgidum L. var. durum Cultivars for Pasta Making. Journal of Agricultural and Food Chemistry, 2008, 56, 8619-8628.	5.2	32
128	Increased Colonic Permeability and Lifestyles as Contributing Factors to Obesity and Liver Steatosis. Nutrients, 2020, 12, 564.	4.1	32
129	Scouting the application of sourdough to frozen dough bread technology. Journal of Cereal Science, 2011, 54, 296-304.	3.7	31
130	From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children. Scientific Reports, 2016, 5, 18571.	3.3	31
131	Effects of Dietary Fibers on Short-Chain Fatty Acids and Gut Microbiota Composition in Healthy Adults: A Systematic Review. Nutrients, 2022, 14, 2559.	4.1	31
132	Manufacture of Italian Caciotta-type cheeses with adjuncts and attenuated adjuncts of selected non-starter lactobacilli. International Dairy Journal, 2011, 21, 254-260.	3.0	30
133	Effects of the Peptide Pheromone Plantaricin A and Cocultivation with Lactobacillus sanfranciscensis DPPMA174 on the Exoproteome and the Adhesion Capacity of Lactobacillus plantarum DC400. Applied and Environmental Microbiology, 2013, 79, 2657-2669.	3.1	30
134	Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. International Journal of Food Microbiology, 2016, 239, 125-132.	4.7	30
135	Piacentinu Ennese PDO Cheese as Reservoir of Promising Probiotic Bacteria. Microorganisms, 2019, 7, 254.	3.6	30
136	High levels of gut-homing immunoglobulin A+ B lymphocytes support the pathogenic role of intestinal mucosal hyperresponsiveness in immunoglobulin A nephropathy patients. Nephrology Dialysis Transplantation, 2021, 36, 452-464.	0.7	30
137	Colonization Ability and Impact on Human Gut Microbiota of Foodborne Microbes From Traditional or Probiotic-Added Fermented Foods: A Systematic Review. Frontiers in Nutrition, 2021, 8, 689084.	3.7	30
138	Effects of Grape Pomace Polyphenols and In Vitro Gastrointestinal Digestion on Antimicrobial Activity: Recovery of Bioactive Compounds. Antioxidants, 2022, 11, 567.	5.1	29
139	Bile Acids and GPBAR-1: Dynamic Interaction Involving Genes, Environment and Gut Microbiome. Nutrients, 2020, 12, 3709.	4.1	28
140	An Innovative Synbiotic Formulation Decreases Free Serum Indoxyl Sulfate, Small Intestine Permeability and Ameliorates Gastrointestinal Symptoms in a Randomized Pilot Trial in Stage IIIb-IV CKD Patients. Toxins, 2021, 13, 334.	3.4	28
141	Fecal Microbiota Transplantation Modulates Renal Phenotype in the Humanized Mouse Model of IgA Nephropathy. Frontiers in Immunology, 2021, 12, 694787.	4.8	28
142	Selection of non-Lactobacillus strains to be used as starters for sourdough fermentation. Food Microbiology, 2020, 90, 103491.	4.2	27
143	Weighing the Impact of Diet and Lifestyle on Female Reproductive Function. Current Medicinal Chemistry, 2019, 26, 3584-3592.	2.4	27
144	Regulation of Cholesterol Metabolism by Bioactive Components of Soy Proteins: Novel Translational Evidence. International Journal of Molecular Sciences, 2021, 22, 227.	4.1	27

#	Article	IF	CITATIONS
145	Accelerated ripening of Pecorino Umbro cheese. Journal of Dairy Research, 1998, 65, 631-642.	1.4	25
146	Gene expression responses of Listeria monocytogenes Scott A exposed to sub-lethal concentrations of natural antimicrobials. International Journal of Food Microbiology, 2018, 286, 170-178.	4.7	25
147	FoodOmics as a new frontier to reveal microbial community and metabolic processes occurring on table olives fermentation. Food Microbiology, 2020, 92, 103606.	4.2	25
148	Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Review of Gastroenterology and Hepatology, 2020, 14, 323-333.	3.0	25
149	Cloning, expression and characterization of a β-d-xylosidase from Lactobacillus rossiae DSM 15814T. Microbial Cell Factories, 2016, 15, 72.	4.0	24
150	Sourdough authentication: quantitative PCR to detect the lactic acid bacterial microbiota in breads. Scientific Reports, 2017, 7, 624.	3.3	24
151	A Comprehensive Peptidomic Approach to Characterize the Protein Profile of Selected Durum Wheat Genotypes: Implication for Coeliac Disease and Wheat Allergy. Nutrients, 2019, 11, 2321.	4.1	24
152	Comparative Genomics and In Vitro Plant Growth Promotion and Biocontrol Traits of Lactic Acid Bacteria from the Wheat Rhizosphere. Microorganisms, 2021, 9, 78.	3.6	24
153	A Low Glycemic Index Mediterranean Diet Combined with Aerobic Physical Activity Rearranges the Gut Microbiota Signature in NAFLD Patients. Nutrients, 2022, 14, 1773.	4.1	24
154	Prenatal and postnatal determinants in shaping offspring's microbiome in the first 1000 days: study protocol and preliminary results at one month of life. Italian Journal of Pediatrics, 2020, 46, 45.	2.6	22
155	The antimicrobial peptide pheromone <scp>P</scp> lantaricin <scp>A</scp> increases antioxidant defenses of human keratinocytes and modulates the expression of filaggrin, involucrin, βâ€defensin 2 and tumor necrosis factorâ€Î± genes. Experimental Dermatology, 2012, 21, 665-671.	2.9	21
156	Beneficial Plant Microorganisms Affect the Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different Molecular Approaches. Frontiers in Microbiology, 2019, 10, 2500.	3.5	20
157	Adjunct Culture of Non-Starter Lactic Acid Bacteria for the Production of Provola Dei Nebrodi PDO Cheese: In Vitro Screening and Pilot-Scale Cheese-Making. Microorganisms, 2021, 9, 179.	3.6	19
158	Effect of proteinases of starter bacteria on the growth and proteolytic activity of Lactobacillus plantarum DPC2741. International Dairy Journal, 2003, 13, 145-157.	3.0	18
159	Twoâ€dimensional electrophoresis and IgEâ€mediated food allergy. Electrophoresis, 2010, 31, 2126-2136.	2.4	17
160	Ketoanalogs' Effects on Intestinal Microbiota Modulation and Uremic Toxins Serum Levels in Chronic Kidney Disease (Medika2 Study). Journal of Clinical Medicine, 2021, 10, 840.	2.4	17
161	Sourdough/lactic acid bacteria. , 2008, , 267-288.		16
162	New Protocol for Production of Reduced-Cluten Wheat Bread and Pasta and Clinical Effect in Patients with Irritable Bowel Syndrome: A randomised, Double-Blind, Cross-Over Study. Nutrients, 2018, 10, 1873.	4.1	16

#	Article	IF	CITATIONS
163	Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. Nutrients, 2021, 13, 992.	4.1	16
164	Tap water is one of the drivers that establish and assembly the lactic acid bacterium biota during sourdough preparation. Scientific Reports, 2019, 9, 570.	3.3	15
165	Use of Autochthonous Lactobacilli to Increase the Safety of Zgougou. Microorganisms, 2020, 8, 29.	3.6	15
166	In Vitro Selection of Probiotics, Prebiotics, and Antioxidants to Develop an Innovative Synbiotic (NatuREN G) and Testing Its Effect in Reducing Uremic Toxins in Fecal Batches from CKD Patients. Microorganisms, 2021, 9, 1316.	3.6	15
167	Unraveling the beneficial effects of herbal Lebanese mixture "Za'atar― History, studies, and properties of a potential healthy food ingredient. Journal of Functional Foods, 2022, 90, 104993.	3.4	15
168	Dietary Fibers and Protective Lactobacilli Drive Burrata Cheese Microbiome. Applied and Environmental Microbiology, 2017, 83, .	3.1	14
169	Lactic Acid Bacterium Population Dynamics in Artisan Sourdoughs Over One Year of Daily Propagations Is Mainly Driven by Flour Microbiota and Nutrients. Frontiers in Microbiology, 2018, 9, 1984.	3.5	14
170	Genomic Analysis of Three Cheese-Borne Pseudomonas lactis with Biofilm and Spoilage-Associated Behavior. Microorganisms, 2020, 8, 1208.	3.6	14
171	Joint Data Analysis in Nutritional Epidemiology: Identification of Observational Studies and Minimal Requirements. Journal of Nutrition, 2018, 148, 285-297.	2.9	13
172	Use of starter cultures for table olives fermentation as possibility to improve the quality of thermally stabilized olive-based paste. LWT - Food Science and Technology, 2018, 90, 381-388.	5.2	13
173	Effects of Different Stress Parameters on Growth and on Oleuropein-Degrading Abilities of Lactiplantibacillus plantarum Strains Selected as Tailored Starter Cultures for Naturally Table Olives. Microorganisms, 2020, 8, 1607.	3.6	13
174	Attenuated Lactococcus lactis and Surface Bacteria as Tools for Conditioning the Microbiota and Driving the Ripening of Semisoft Caciotta Cheese. Applied and Environmental Microbiology, 2020, 86, .	3.1	13
175	How multiple farming conditions correlate with the composition of the raw cow's milk lactic microbiome. Environmental Microbiology, 2021, 23, 1702-1716.	3.8	13
176	Nutritional Improvement of Gluten-Free Breadsticks by Olive Cake Addition and Sourdough Fermentation: How Texture, Sensory, and Aromatic Profile Were Affected?. Frontiers in Nutrition, 2022, 9, 830932.	3.7	13
177	Perspective: Essential Study Quality Descriptors for Data from Nutritional Epidemiologic Research. Advances in Nutrition, 2017, 8, 639-651.	6.4	12
178	Conventional and unconventional recovery of inulin rich extracts for food use from the roots of globe artichoke. Food Hydrocolloids, 2020, 107, 105975.	10.7	12
179	Chemical Characterization, Gastrointestinal Motility and Sensory Evaluation of Dark Chocolate: A Nutraceutical Boosting Consumers' Health. Nutrients, 2020, 12, 939.	4.1	12
180	Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. LWT - Food Science and Technology, 2020, 126, 109314.	5.2	12

#	Article	IF	CITATIONS
181	Early Life Microbiota Colonization at Six Months of Age: A Transitional Time Point. Frontiers in Cellular and Infection Microbiology, 2021, 11, 590202.	3.9	12
182	Bioprocessing of Barley and Lentil Grains to Obtain In Situ Synthesis of Exopolysaccharides and Composite Wheat Bread with Improved Texture and Health Properties. Foods, 2021, 10, 1489.	4.3	12
183	Microfluidic technology applied to cell-wall protein analysis of olive related lactic acid bacteria. International Journal of Food Microbiology, 2009, 130, 6-11.	4.7	11
184	How Listeria monocytogenes Shapes Its Proteome in Response to Natural Antimicrobial Compounds. Frontiers in Microbiology, 2019, 10, 437.	3.5	11
185	Probiotics in Psychosocial Stress and Anxiety. A Systematic Review. Journal of Gastrointestinal and Liver Diseases, 2020, 29, 77-83.	0.9	11
186	Combined effects of a natural <i>Allium</i> spp. extract and modified atmospheres packaging on shelf life extension of oliveâ€based paste. International Journal of Food Science and Technology, 2017, 52, 1164-1175.	2.7	10
187	Probiotic and Metabolic Characterization of Vaginal Lactobacilli for a Potential Use in Functional Foods. Microorganisms, 2021, 9, 833.	3.6	10
188	Polyphenol Enriched Diet Administration During Pregnancy and Lactation Prevents Dysbiosis in Ulcerative Colitis Predisposed Littermates. Frontiers in Cellular and Infection Microbiology, 2021, 11, 622327.	3.9	10
189	How Metabolomics Provides Novel Insights on Celiac Disease and Gluten-Free Diet: A Narrative Review. Frontiers in Microbiology, 0, 13, .	3.5	10
190	Disruption of the gene encoding glutamate dehydrogenase affects growth, amino acids catabolism and survival of Lactobacillus plantarum UC1001. International Dairy Journal, 2011, 21, 59-68.	3.0	9
191	Gluten-free diet and gut microbiome. Journal of Cereal Science, 2020, 95, 103058.	3.7	9
192	Use of Exopolysaccharide-Synthesizing Lactic Acid Bacteria and Fat Replacers for Manufacturing Reduced-Fat Burrata Cheese: Microbiological Aspects and Sensory Evaluation. Microorganisms, 2020, 8, 1618.	3.6	9
193	The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. European Journal of Nutrition, 2022, 61, 2517-2530.	3.9	9
194	WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota. Digestive and Liver Disease, 2021, 53, 1412-1421.	0.9	8
195	Dysbiosis Triggers ACF Development in Genetically Predisposed Subjects. Cancers, 2021, 13, 283.	3.7	7
196	Metaproteomics Approach and Pathway Modulation in Obesity and Diabetes: A Narrative Review. Nutrients, 2022, 14, 47.	4.1	7
197	Proteome Response of Staphylococcus xylosus DSM 20266T to Anaerobiosis and Nitrite Exposure. Frontiers in Microbiology, 2018, 9, 2275.	3.5	6
198	Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients, 2021, 13, 3292.	4.1	6

#	Article	IF	CITATIONS
199	Draft Genome Sequence of Lactobacillus rossiae DSM 15814 ^T . Journal of Bacteriology, 2012, 194, 5460-5461.	2.2	5
200	Prototype Gluten-Free Breads from Processed Durum Wheat: Use of Monovarietal Flours and Implications for Gluten Detoxification Strategies. Nutrients, 2020, 12, 3824.	4.1	5
201	HDHL-INTIMIC: A European Knowledge Platform on Food, Diet, Intestinal Microbiomics, and Human Health. Nutrients, 2022, 14, 1881.	4.1	4
202	Clinical and Metabolomic Effects of LactiplantibacillusÂplantarum and Pediococcus acidilactici in Fructose Intolerant Patients. Nutrients, 2022, 14, 2488.	4.1	4
203	Phenotyping of Fecal Microbiota of Winnie, a Rodent Model of Spontaneous Chronic Colitis, Reveals Specific Metabolic, Genotoxic, and Pro-inflammatory Properties. Inflammation, 2022, 45, 2477-2497.	3.8	1
204	Pasta Filata Cheeses: Traditional Pasta Filata Cheese. , 2022, , 274-280.		0
205	Lactobacillus spp. and Related Genera: General Characteristics. , 2022, , 293-304.		0