Martin NovÃk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358255/publications.pdf

Version: 2024-02-01

1307594 888059 33 375 7 17 citations g-index h-index papers 34 34 34 139 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Surface quality of hardened steels after grinding. Manufacturing Technology, 2011, 11, 55-59.	1.4	72
2	Surfaces with high precision of roughness after grinding. Manufacturing Technology, 2012, 12, 66-70.	1.4	72
3	GICS for grinding process optimization. Manufacturing Technology, 2012, 12, 22-26.	1.4	44
4	ANALYSIS OF THE SURFACE PROFILE AND ITS MATERIAL SHARE DURING THE GRINDING INCONEL 718 ALLOY. Advances in Science and Technology Research Journal, 0, 9, 41-48.	0.8	22
5	Machining and its Influence to Surface Quality of Machine Parts. Key Engineering Materials, 0, 581, 354-359.	0.4	16
6	Grinding of the Alloy INCONEL 718 and Final Roughness of the Surface and Material Share. Manufacturing Technology, 2015, 15, 1015-1023.	1.4	16
7	New Ways in Aluminium Alloys Grinding. Key Engineering Materials, 0, 496, 132-137.	0.4	14
8	Differences at the Surface Roughness by the ELID and Grinding Technology. Manufacturing Technology, 2013, 13, 210-215.	1.4	14
9	Influence of Grinding Wheel Dressing on the Roughness of Final Surface and Cutting Force during GGG60 Grinding. Key Engineering Materials, 0, 686, 218-223.	0.4	13
10	Influence of grinding on machine parts with design notches. Manufacturing Technology, 2009, 9, .	1.4	10
11	G-Ratio in hardened steel grinding with different coolants. Manufacturing Technology, 2012, 12, 192-197.	1.4	9
12	A Roundness Machine Measuring Probe Calibration. Manufacturing Technology, 2018, 18, 1053-1059.	1.4	7
13	Grinding and surface quality parameters at automotive parts machining. Manufacturing Technology, 2010, 10, 36-38.	1.4	7
14	Grinding of Titanium Alloy Ti6Al4V with Silicon Carbide Grinding Wheel. Manufacturing Technology, 2016, 16, 159-162.	1.4	7
15	Influence of the Corrosion Surrounding on Surface Quality of Grounded Hardened Steels. Key Engineering Materials, 0, 496, 25-29.	0.4	5
16	New Ways at the Fine Grinding. Key Engineering Materials, 0, 581, 255-260.	0.4	5
17	The Influence of Cutting Conditions on Surface Roughness during Steel X38CrMoV5 Grinding. Key Engineering Materials, 0, 581, 247-254.	0.4	5
18	The Impact of Changes in InFeed Rate on Surface Integrity after Chrome Plate Grinding by Silicon Carbide. Manufacturing Technology, 2019, 19, 284-291.	1.4	5

#	Article	IF	CITATIONS
19	The Effect of Changes in Feed Rate on Surface Integrity during Nickel Coating Grinding. Solid State Phenomena, 0, 261, 207-214.	0.3	4
20	The Impact of Changes in InFeed Rate on Surface Integrity after Chrome Plate Grinding by Microcrystalline Corundum. Manufacturing Technology, 2019, 19, 461-468.	1.4	4
21	Process and Equipment Improvement for Nickel Brush Plating Application. Manufacturing Technology, 2017, 17, 503-507.	1.4	4
22	The Effect of Changes to Nickel Coating Machine on Surface Integrity and Microstructure after Grinding. Manufacturing Technology, 2017, 17, 906-912.	1.4	3
23	Surface Machining after Deposition of Wear Resistant Hard Coats by High Velocity Oxygen Fuel Technology. Manufacturing Technology, 2017, 17, 919-925.	1.4	3
24	Characteristic Signal of FT3 Measuring Probe. Manufacturing Technology, 2019, 19, 168-171.	1.4	3
25	Grinding and its influence to ground surface durability. , 2011, , .		2
26	Influence of Machining Process on Design Notch Performance. Key Engineering Materials, 0, 496, 217-222.	0.4	2
27	Analyses of Influence on Chromium Coating after Grinding from the View of Final Microstructure and Microhardness in the Surface Layer. Materials, 2021, 14, 2396.	2.9	2
28	Analysis of the Base Material and Hard Chrome Plated Layer in an Unloaded State. Manufacturing Technology, 2018, 18, 616-620.	1.4	2
29	Grinding of the Alloy INCONEL 718 and Final Roughness of the Surface. Key Engineering Materials, 0, 686, 212-217.	0.4	1
30	The Influence of Cutting Conditions on Surface Roughness during Steel 100Cr6 Grinding. Solid State Phenomena, 0, 261, 215-220.	0.3	1
31	Specific Cutting Conditions of 100Cr6 Steel Grinding and Selected Final Roughness Parameters. Advances in Science and Technology Research Journal, 2020, 14, 184-189.	0.8	1
32	Comparison of Roughness and Profile between ELID and Ground Surfaces. Key Engineering Materials, 0, 581, 378-383.	0.4	0
33	The Formation and Behaviour of Residual Stresses with Finished Surfaces. Key Engineering Materials, 2016, 686, 63-67.	0.4	О