Jae-Hoon Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3358084/publications.pdf Version: 2024-02-01

INE-HOON HWANG

#	Article	IF	CITATIONS
1	Lignocellulolytic microbiomes for augmenting lignocellulose degradation in anaerobic digestion. Trends in Microbiology, 2022, 30, 6-9.	3.5	25
2	Bismuth-Chitosan Nanocomposite Sensors for Trace Level Detection of Ni(II) and Co(II) in Water Samples. Water (Switzerland), 2022, 14, 302.	1.2	2
3	Recycling urine for bioelectrochemical hydrogen production using a MoS2 nano carbon coated electrode in a microbial electrolysis cell. Journal of Power Sources, 2022, 527, 231209.	4.0	7
4	Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Chemosphere, 2022, 296, 134001.	4.2	10
5	A strategy for power generation from bilgewater using a photosynthetic microalgal fuel cell (MAFC). Journal of Power Sources, 2021, 484, 229222.	4.0	10
6	Renewable algal photo H2 production without S control using acetate enriched fermenter effluents. International Journal of Hydrogen Energy, 2021, 46, 1740-1751.	3.8	12
7	Continuous photosynthetic biohydrogen production from acetate-rich wastewater: Influence of light intensity. International Journal of Hydrogen Energy, 2021, 46, 21812-21821.	3.8	10
8	Direct Mercury Detection in Landfill Leachate Using a Novel AuNP-Biopolymer Carbon Screen-Printed Electrode Sensor. Micromachines, 2021, 12, 649.	1.4	8
9	Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sensors and Actuators B: Chemical, 2021, 344, 130263.	4.0	31
10	Microalgae: An Eco-friendly Tool for the Treatment of Wastewaters for Environmental Safety. , 2020, , 283-304.		2
11	Recent Developments of PFAS-Detecting Sensors and Future Direction: A Review. Micromachines, 2020, 11, 667.	1.4	57
12	Microbial Symbiosis: A Network towards Biomethanation. Trends in Microbiology, 2020, 28, 968-984.	3.5	83
13	A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb(II), Cd(II) and Zn(II) in Wastewater. Micromachines, 2019, 10, 511.	1.4	32
14	Improving Electrochemical Pb ²⁺ Detection Using a Vertically Aligned 2D MoS ₂ Nanofilm. Analytical Chemistry, 2019, 91, 11770-11777.	3.2	73
15	A novel nanoporous bismuth electrode sensor for in situ heavy metal detection. Electrochimica Acta, 2019, 298, 440-448.	2.6	72
16	Effects of LED-controlled spatially-averaged light intensity and wavelength on Neochloris oleoabundans growth and lipid composition. Algal Research, 2019, 41, 101573.	2.4	13
17	A novel Fe-Chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate. Sensors and Actuators B: Chemical, 2019, 294, 89-97.	4.0	51
18	Enhanced Electrochemical Detection of Multiheavy Metal Ions Using a Biopolymer-Coated Planar Carbon Electrode. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2387-2393.	2.4	22

JAE-HOON HWANG

#	Article	IF	CITATIONS
19	Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs). Journal of Hazardous Materials, 2019, 368, 732-738.	6.5	49
20	Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. Bioresource Technology, 2018, 258, 365-375.	4.8	49
21	Photosynthetic biohydrogen production in a wastewater environment and its potential as renewable energy. Energy, 2018, 149, 222-229.	4.5	21
22	Enhanced electrochemical detection of multi-heavy metal ions using a biopolymer-coated planar carbon electrode. , 2018, , .		3
23	Effect of permeate recycling and light intensity on growth kinetics of Synechocystis sp. PCC 6803. Algal Research, 2017, 27, 170-176.	2.4	13
24	Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 2017, 243, 147-153.	4.8	119
25	Effect of flue gas CO ₂ on the growth, carbohydrate and fatty acid composition of a green microalga <i>Scenedesmus obliquus</i> for biofuel production. Environmental Technology (United) Tj ETQq1 I	l 0.7 84 314	rg B B/Overloc
26	Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Research, 2016, 17, 14-20.	2.4	39
27	Use of Microalgae for Advanced Wastewater Treatment and Sustainable Bioenergy Generation. Environmental Engineering Science, 2016, 33, 882-897.	0.8	105
28	Pretreatment of microalgal biomass for enhanced recovery/extraction of reducing sugars and proteins. Bioprocess and Biosystems Engineering, 2016, 39, 95-103.	1.7	37
29	Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03. Environmental Science and Pollution Research, 2015, 22, 18839-18848.	2.7	3
30	Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. Journal of Renewable and Sustainable Energy, 2014, 6, 063107.	0.8	10
31	Photoheterotrophic microalgal hydrogen production using acetate- and butyrate-rich wastewater effluent. Energy, 2014, 78, 887-894.	4.5	46
32	Photoautotrophic hydrogen production by eukaryotic microalgae under aerobic conditions. Nature Communications, 2014, 5, 3234.	5.8	92
33	Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecological Engineering, 2014, 73, 260-269.	1.6	129
34	Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnology for Biofuels, 2013, 6, 37.	6.2	63
35	Removal of Nitrogen and Phosphorus from Piggery Wastewater Effluent Using the Green Microalga <i>Scenedesmus obliquus</i> . Journal of Environmental Engineering, ASCE, 2013, 139, 1198-1205.	0.7	66
36	Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy and Environmental Science, 2011, 4, 3513.	15.6	82

JAE-HOON HWANG

#	Article	IF	CITATIONS
37	Hydrogen production from sulfate- and ferrous-enriched wastewater. International Journal of Hydrogen Energy, 2011, 36, 13984-13990.	3.8	12
38	Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 2011, 88, 3300-3306.	5.1	146
39	Feasibility of hydrogen production from ripened fruits by a combined two-stage (dark/dark) fermentation system. Bioresource Technology, 2011, 102, 1051-1058.	4.8	44
40	Effect of pH and sulfate concentration on hydrogen production using anaerobic mixed microflora. International Journal of Hydrogen Energy, 2009, 34, 9702-9710.	3.8	66
41	Effect of COD/SO42â^'ratio and Fe(II) under the variable hydraulic retention time (HRT) on fermentative hydrogen production. Water Research, 2009, 43, 3525-3533.	5.3	15