
Young Wook Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	18F–THK–5351, Fluorodeoxyglucose, and Florbetaben PET Images in Atypical Alzheimer's Disease: A Pictorial Insight into Disease Pathophysiology. Brain Sciences, 2021, 11, 465.	1.1	2
2	Therapeutic Effect of BDNF-Overexpressing Human Neural Stem Cells (F3.BDNF) in a Contusion Model of Spinal Cord Injury in Rats. International Journal of Molecular Sciences, 2021, 22, 6970.	1.8	18
3	Clinical Implications of Amyloid-Beta Accumulation in Occipital Lobes in Alzheimer's Continuum. Brain Sciences, 2021, 11, 1232.	1.1	6
4	Analgesic Tolerance Development during Repetitive Electric Stimulations Is Associated with Changes in the Expression of Activated Microglia in Rats with Osteoarthritis. Biomedicines, 2020, 8, 575.	1.4	1
5	Enforced format change to medical education webinar during the coronavirus disease 2019 pandemic. Korean Journal of Medical Education, 2020, 32, 101-102.	0.6	11
6	Alterations in protein expression patterns of spinal peroxisome proliferator-activated receptors after spinal cord injury. Neurological Research, 2019, 41, 883-892.	0.6	4
7	Transcutaneous Electrical Nerve Stimulation Reduces Knee Osteoarthritic Pain by Inhibiting Spinal Glial Cells in Rats. Physical Therapy, 2019, 99, 1211-1223.	1.1	8
8	Low-Level Laser Irradiation Improves Motor Recovery After Contusive Spinal Cord Injury in Rats. Tissue Engineering and Regenerative Medicine, 2017, 14, 57-64.	1.6	13
9	Re. American Journal of Physical Medicine and Rehabilitation, 2016, 95, e7-e8.	0.7	2
10	<i>Panax ginseng</i> Improves Functional Recovery after Contusive Spinal Cord Injury by Regulating the Inflammatory Response in Rats: An <i>In Vivo</i> Study. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-7.	0.5	17
11	Postinjury Neuroplasticity in Central Neural Networks. Neural Plasticity, 2015, 2015, 1-2.	1.0	2
12	Kinesio Taping Improves Pain, Range of Motion, and Proprioception in Older Patients with Knee Osteoarthritis. American Journal of Physical Medicine and Rehabilitation, 2015, 94, 192-200.	0.7	116
13	Effect of the Combination of CI-988 and Morphine on Neuropathic Pain after Spinal Cord Injury in Rats. Korean Journal of Physiology and Pharmacology, 2015, 19, 125.	0.6	3
14	High-Frequency Transcutaneous Electrical Nerve Stimulation Alleviates Spasticity After Spinal Contusion by Inhibiting Activated Microglia in Rats. Neurorehabilitation and Neural Repair, 2015, 29, 370-381.	1.4	22
15	The effect of PI3 kinase inhibitor LY294002 on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Life Sciences, 2013, 92, 916-922.	2.0	15
16	Effects of Repetitive High Frequency Transcutaneous Electrical Nerve Stimulation (HF-TENS) on Spasticity and Motor Function following Spinal Cord Injury in Rats. Journal of Physical Therapy Science, 2012, 24, 133-137.	0.2	7
17	Effect of NMDA NR2B antagonist on neuropathic pain in two spinal cord injury models. Pain, 2012, 153, 1022-1029.	2.0	74
18	Long-term changes in expressions of spinal glutamate transporters after spinal cord injury. Brain Research, 2011, 1389, 194-199.	1.1	11

Young Wook Yoon

#	Article	IF	CITATIONS
19	Loss of <i>hsp70.1</i> Decreases Functional Motor Recovery after Spinal Cord Injury in Mice. Korean Journal of Physiology and Pharmacology, 2010, 14, 157.	0.6	7
20	Role of spinal cholecystokinin in neuropathic pain after spinal cord hemisection in rats. Neuroscience Letters, 2009, 462, 303-307.	1.0	23
21	Long-term Follow-up of Cutaneous Hypersensitivity in Rats with a Spinal Cord Contusion. Korean Journal of Physiology and Pharmacology, 2008, 12, 299.	0.6	14
22	The peripheral role of group I metabotropic glutamate receptors on nociceptive behaviors in rats with knee joint inflammation. Neuroscience Letters, 2007, 416, 123-127.	1.0	26
23	Peripheral mGluR5 antagonist attenuated craniofacial muscle pain and inflammation but not mGluR1 antagonist in lightly anesthetized rats. Brain Research Bulletin, 2006, 70, 378-385.	1.4	19
24	Dorsal column lesion reduces mechanical allodynia in the induction, but not the maintenance, phase in spinal hemisected rats. Neuroscience Letters, 2005, 379, 218-222.	1.0	14
25	Mechanical and cold allodynia in a rat spinal cord contusion model. Somatosensory & Motor Research, 2004, 21, 25-31.	0.4	33
26	Intraarticular Pretreatment with Ketamine and Memantine Could Prevent Arthritic Pain: Relevance to the Decrease of Spinal c-Fos Expression in Rats. Anesthesia and Analgesia, 2004, 99, 152-158.	1.1	31
27	The glutamatergic N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors in the joint contribute to the induction, but not maintenance, of arthritic pain in rats. Neuroscience Letters, 2003, 351, 177-180.	1.0	19
28	Cold and mechanical allodynia in both hindpaws and tail following thoracic spinal cord hemisection in rats: time courses and their correlates. Neuroscience Letters, 2003, 343, 200-204.	1.0	18
29	Effects of morphine on mechanical allodynia in a rat model of central neuropathic pain. NeuroReport, 2003, 14, 1017-1020.	0.6	26
30	Local neurokinin-1 receptor in the knee joint contributes to the induction, but not maintenance, of arthritic pain in the rat. Neuroscience Letters, 2002, 322, 21-24.	1.0	37
31	A novel method for convenient assessment of arthritic pain in voluntarily walking rats. Neuroscience Letters, 2001, 308, 95-98.	1.0	75
32	Substance P Plays a Critical Role in Photic Resetting of the Circadian Pacemaker in the Rat Hypothalamus. Journal of Neuroscience, 2001, 21, 4026-4031.	1.7	40
33	Different strains and substrains of rats show different levels of neuropathic pain behaviors. Experimental Brain Research, 1999, 129, 167-171.	0.7	98
34	Comparison of sympathetic sprouting in sensory ganglia in three animal models of neuropathic pain. Experimental Brain Research, 1998, 120, 432-438.	0.7	101
35	Supraspinal involvement in the production of mechanical allodynia by spinal nerve injury in rats. Neuroscience Letters, 1998, 246, 117-119.	1.0	70
36	Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. NeuroReport, 1998, 9, 367-372.	0.6	86

Young Wook Yoon

#	Article	IF	CITATIONS
37	NMDA receptors are important for both mechanical and thermal allodynia from peripheral nerve injury in rats. NeuroReport, 1997, 8, 2149-2153.	0.6	73
38	CNS innervation of the urinary bladder demonstrated by immunohistochemical study for c-fos and pseudorabies virus. Journal of Korean Medical Science, 1997, 12, 340.	1.1	9
39	Sprouting sympathetic fibers form synaptic varicosities in the dorsal root ganglion of the rat with neuropathic injury. Brain Research, 1997, 751, 275-280.	1.1	73
40	Ventricular premature beat—driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. American Heart Journal, 1996, 132, 78-83.	1.2	106
41	Contributions of injured and intact afferents to neuropathic pain in an experimental rat model. Pain, 1996, 64, 27-36.	2.0	216
42	Both motor and sensory abnormalities contribute to changes in foot posture in an experimental rat neuropathic model. Pain, 1996, 67, 173-178.	2.0	26
43	Mechanical allodynia is more strongly manifested in older rats in an experimental model of peripheral neuropathy. Neuroscience Letters, 1995, 199, 158-160.	1.0	36
44	Effects of age on behavioral signs of neuropathic pain in an experimental rat model. Neuroscience Letters, 1995, 183, 54-57.	1.0	53
45	Response properties of hypogastric afferent fibers supplying the uterus in the cat. Brain Research, 1993, 622, 215-225.	1.1	60