Barbara GawroÅ**\$**ka-Kozak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3356533/publications.pdf

Version: 2024-02-01

62 papers 1,971 citations

279798 23 h-index 254184 43 g-index

64 all docs 64 does citations

64 times ranked 2650 citing authors

#	Article	IF	Citations
1	Dermal White Adipose Tissue (dWAT) Is Regulated by Foxn1 and Hif-1α during the Early Phase of Skin Wound Healing. International Journal of Molecular Sciences, 2022, 23, 257.	4.1	6
2	Comparative studies on the effect of pig adipose-derived stem cells (pASCs) preconditioned with hypoxia or normoxia on skin wound healing in mice. Experimental Cell Research, 2022, 418, 113263.	2.6	1
3	Adipose-Derived Stromal/Stem Cells from Large Animal Models: from Basic to Applied Science. Stem Cell Reviews and Reports, 2021, 17, 719-738.	3.8	18
4	Wnt signaling and the transcription factor Foxn1 contribute to cutaneous wound repair in mice. Connective Tissue Research, 2021, 62, 238-248.	2.3	10
5	Impairment of the Hifâ€1α regulatory pathway in Foxn1â€deficient (Foxn1 ^{â^'/â^'}) mice affects the skin wound healing process. FASEB Journal, 2021, 35, e21289.	0.5	6
6	Effect of Pig-Adipose-Derived Stem Cells' Conditioned Media on Skin Wound-Healing Characteristics In Vitro. International Journal of Molecular Sciences, 2021, 22, 5469.	4.1	7
7	Histology Scoring System for Murine Cutaneous Wounds. Stem Cells and Development, 2021, 30, 1141-1152.	2.1	20
8	Molekularne mechanizmy dziaÅ,ania czynnika transkrypcyjnego FOXN1 w skórze. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 573-583.	0.1	0
9	The Transcription Factor FOXN1 Regulates Skin Adipogenesis and Affects Susceptibility to Diet-Induced Obesity. Journal of Investigative Dermatology, 2020, 140, 1166-1175.e9.	0.7	13
10	Age, Diet and Epidermal Signaling Modulate Dermal Fibroblasts' Adipogenic Potential. International Journal of Molecular Sciences, 2020, 21, 8955.	4.1	5
11	Foxn1 Control of Skin Function. Applied Sciences (Switzerland), 2020, 10, 5685.	2.5	2
12	The effect of hypoxia on the proteomic signature of pig adipose-derived stromal/stem cells (pASCs). Scientific Reports, 2020, 10, 20035.	3.3	7
13	The In Vitro Inhibitory Effect of Sivelestat on Elastase Induced Collagen and Metallopeptidase Expression in Equine Endometrium. Animals, 2020, 10, 863.	2.3	8
14	Safety and Efficacy of Human Adipose-Derived Stromal/Stem Cell Therapy in an Immunocompetent Murine Pressure Ulcer Model. Stem Cells and Development, 2020, 29, 440-451.	2.1	9
15	Safety of Human Adipose Stromal Vascular Fraction Cells Isolated with a Closed System Device in an Immunocompetent Murine Pressure Ulcer Model. Stem Cells and Development, 2020, 29, 452-461.	2.1	7
16	Cutaneous wound healing in aged, high fat diet-induced obese female or male C57BL/6 mice. Aging, 2020, 12, 7066-7111.	3.1	18
17	The Inhibition of Cathepsin G on Endometrial Explants With Endometrosis in the Mare. Frontiers in Veterinary Science, 2020, 7, 582211.	2.2	9
18	Foxn1 expression in keratinocytes is stimulated by hypoxia: further evidence of its role in skin wound healing. Scientific Reports, 2018, 8, 5425.	3.3	22

#	Article	IF	CITATIONS
19	Effect of $TGF\hat{l}^21$, $TGF\hat{l}^23$ and keratinocyte conditioned media on functional characteristics of dermal fibroblasts derived from reparative (Balb/c) and regenerative (Foxn1 deficient; nude) mouse models. Cell and Tissue Research, 2018, 374, 149-163.	2.9	20
20	Foxn1 in Skin Development, Homeostasis and Wound Healing. International Journal of Molecular Sciences, 2018, 19, 1956.	4.1	14
21	Brown and brite adipocytes: Same function, but different origin and response. Biochimie, 2017, 138, 102-105.	2.6	47
22	Foxn1 and Mmpâ€9 expression in intact skin and during excisional wound repair in young, adult, and old C57Bl/6 mice. Wound Repair and Regeneration, 2017, 25, 248-259.	3.0	19
23	Neotenic phenomenon in gene expression in the skin of Foxn1- deficient (nude) mice - a projection for regenerative skin wound healing. BMC Genomics, 2017, 18, 56.	2.8	21
24	Animal Models of Skin Regeneration. , 2017, , 343-356.		3
25	Mechanisms of metabolism, aging and obesity. Biochimie, 2016, 124, 1-2.	2.6	2
26	Foxn1 Transcription Factor Regulates Wound Healing of Skin through Promoting Epithelial-Mesenchymal Transition. PLoS ONE, 2016, 11, e0150635.	2.5	38
27	Characterization of a Murine Pressure Ulcer Model to Assess Efficacy of Adipose-derived Stromal Cells. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e334.	0.6	20
28	Adipose Stromal Cells Repair Pressure Ulcers in Both Young and Elderly Mice: Potential Role of Adipogenesis in Skin Repair. Stem Cells Translational Medicine, 2015, 4, 632-642.	3.3	62
29	The Importance of the Canonical Wnt Signaling Pathway in the Porcine Endometrial Stromal Stem/Progenitor Cells: Implications for Regeneration. Stem Cells and Development, 2015, 24, 2873-2885.	2.1	17
30	Preparation and Differentiation of Mesenchymal Stem Cells from Ears of Adult Mice. Methods in Enzymology, 2014, 538, 1-13.	1.0	14
31	Expression of adipocyte biomarkers in a primary cell culture models reflects preweaning adipobiology Journal of Biological Chemistry, 2014, 289, 23330.	3.4	1
32	Animal models of skin regeneration. Reproductive Biology, 2014, 14, 61-67.	1.9	31
33	Expression of Adipocyte Biomarkers in a Primary Cell Culture Models Reflects Preweaning Adipobiology. Journal of Biological Chemistry, 2014, 289, 18478-18488.	3.4	42
34	Recruitment of fat cell precursors during high fat diet in C57BL/6J mice is fat depot specific. Obesity, 2014, 22, 1091-1102.	3.0	13
35	Cyclosporin A reduces matrix metalloproteinases and collagen expression in dermal fibroblasts from regenerative FOXN1 deficient (nude) mice. Fibrogenesis and Tissue Repair, 2013, 6, 7.	3.4	22
36	Reprogramming mouse ear mesenchymal stem cells (EMSC) expressing the Dlk1-Dio3 imprinted gene cluster. Stem Cell Discovery, 2013, 03, 64-71.	0.5	1

#	Article	IF	Citations
37	Diet-Induced Obesity in Stem Cell Antigen-1 KO Mice. Stem Cells and Development, 2012, 21, 249-259.	2.1	5
38	Uncoupling of inflammation and insulin resistance by NF-κB in transgenic mice through elevated energy expenditure Journal of Biological Chemistry, 2012, 287, 803.	3.4	0
39	Scarless skin wound healing in FOXN1 deficient (nude) mice is associated with distinctive matrix metalloproteinase expression. Matrix Biology, 2011, 30, 290-300.	3.6	56
40	Cell Growth Characteristics, Differentiation Frequency, and Immunophenotype of Adult Ear Mesenchymal Stem Cells. Stem Cells and Development, 2010, 19, 83-92.	2.1	21
41	Uncoupling of Inflammation and Insulin Resistance by NF-κB in Transgenic Mice through Elevated Energy Expenditure. Journal of Biological Chemistry, 2010, 285, 4637-4644.	3.4	138
42	Adipose Tissue Collagen VI in Obesity. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 5155-5162.	3.6	268
43	Flow cytometric and immunohistochemical detection of in vivo BrdU-labeled cells in mouse fat depots. Biochemical and Biophysical Research Communications, 2009, 378, 539-544.	2.1	26
44	IFATS Collection: Stem Cell Antigen-1-Positive Ear Mesenchymal Stem Cells Display Enhanced Adipogenic Potential. Stem Cells, 2008, 26, 2666-2673.	3.2	16
45	Inactivation of PKCθ leads to increased susceptibility to obesity and dietary insulin resistance in mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E84-E91.	3.5	58
46	Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. Journal of Cellular Biochemistry, 2007, 102, 122-135.	2.6	24
47	Role of Adiponectin and Inflammation in Insulin Resistance of Mc3r and Mc4r Knockout Mice. Obesity, 2007, 15, 2664-2672.	3.0	43
48	Matrix metalloproteinase 9 (MMP-9) is upregulated during scarless wound healing in athymic nude mice. Matrix Biology, 2006, 25, 505-514.	3.6	75
49	Scarless skin repair in immunodeficient mice. Wound Repair and Regeneration, 2006, 14, 265-276.	3.0	127
50	Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. FASEB Journal, 2005, 19, 1205-1207.	0.5	65
51	Sequestration of Thermogenic Transcription Factors in the Cytoplasm during Development of Brown Adipose Tissue. Journal of Biological Chemistry, 2004, 279, 25916-25926.	3.4	39
52	Regeneration in the Ears of Immunodeficient Mice: Identification and Lineage Analysis of Mesenchymal Stem Cells. Tissue Engineering, 2004, 10, 1251-1265.	4.6	56
53	Membrane Disrupting Lytic Peptide Conjugates Destroy Hormone Dependent and Independent Breast Cancer Cells in vitro and in vivo. Breast Cancer Research and Treatment, 2003, 78, 17-27.	2.5	65
54	Human prostate cancer cells and xenografts are targeted and destroyed through luteinizing hormone releasing hormone receptors. Prostate, 2003, 56, 239-249.	2.3	55

#	Article	IF	CITATIONS
55	Agouti Expression in Human Adipose Tissue: Functional Consequences and Increased Expression in Type 2 Diabetes. Diabetes, 2003, 52, 2914-2922.	0.6	74
56	Administration of a Nitric Oxide Synthase Inhibitor Counteracts Prostaglandin F2-Induced Luteolysis in Cattle1. Biology of Reproduction, 2003, 68, 1674-1681.	2.7	105
57	Effects of a Lytic Peptide Conjugated to \hat{l}^2 hCG on Ovarian Cancer: Studies in Vitro and in Vivo. Gynecologic Oncology, 2002, 85, 45-52.	1.4	46
58	Role of Luteinizing Hormone in Control of Oviduct Function. Reproduction in Domestic Animals, 2000, 35, 129.	1.4	6
59	Importance of Endometrial Luteinizing Hormone Receptors in Induction of Luteolysis and Maternal Recognition of Pregnancy in the Pig. Reproduction in Domestic Animals, 2000, 35, 190.	1.4	14
60	Effect of estradiol and progesterone on oviductal LH-receptors and LH-dependent relaxation of the porcine oviduct. Theriogenology, 2000, 53, 659-672.	2.1	33
61	Topography and structure of corpus striatum in Insectivora. Acta Theriologica, 1987, 32, 95-104, plates 3-4.	1.1	1
62	Bisoniana LXXXIX. Structure and topography of cerebellar nuclei in the European bison. Acta Theriologica, 1986, 31, 159-166, plate 6.	1.1	0