Lu Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335631/publications.pdf

Version: 2024-02-01

		34076	34964
99	12,821	52	98
papers	citations	h-index	g-index
105	105	105	14496
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction. Advanced Materials, 2016, 28, 5080-5086.	11.1	718
2	Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. Advanced Energy Materials, 2016, 6, 1502585.	10.2	668
3	Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials, 2016, 28, 1668-1674.	11.1	663
4	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2014, 2, 3344.	5.2	601
5	Ultrafine NiO Nanosheets Stabilized by TiO ₂ from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society, 2016, 138, 6517-6524.	6.6	597
6	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 1718-1726.	7.2	452
7	A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature Communications, 2019, 10, 4585.	5. 8	441
8	NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zincâ€"Air Batteries. Advanced Energy Materials, 2017, 7, 1700467.	10.2	422
9	Grapheneâ€Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. Angewandte Chemie - International Edition, 2014, 53, 250-254.	7.2	384
10	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 12624-12631.	7.2	345
11	MILâ€101â€Derived Mesoporous Carbon Supporting Highly Exposed Fe Singleâ€Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. Advanced Materials, 2021, 33, e2101038.	11.1	327
12	Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons. Advanced Materials, 2018, 30, 1704663.	11.1	309
13	Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nature Communications, 2020, 11, 3028.	5. 8	294
14	Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy. Advanced Materials, 2016, 28, 8379-8387.	11.1	264
15	Intrinsic Carbonâ€Defectâ€Driven Electrocatalytic Reduction of Carbon Dioxide. Advanced Materials, 2019, 31, e1808276.	11.1	263
16	Pd Singleâ€Atom Catalysts on Nitrogenâ€Doped Graphene for the Highly Selective Photothermal Hydrogenation of Acetylene to Ethylene. Advanced Materials, 2019, 31, e1900509.	11.1	262
17	Atomic Cationâ€Vacancy Engineering of NiFeâ€Layered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 24612-24619.	7.2	259
18	CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1501241.	10.2	253

#	Article	IF	CITATIONS
19	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie - International Edition, 2020, 59, 13057-13062.	7.2	222
20	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. Nano Research, 2018, 11, 3462-3468.	5.8	199
21	Recent Advances in the Development of Singleâ€Atom Catalysts for Oxygen Electrocatalysis and Zinc–Air Batteries. Advanced Energy Materials, 2020, 10, 2003018.	10.2	181
22	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. Journal of Materials Chemistry C, 2015, 3, 1922-1928.	2.7	173
23	Multishelled Niâ€Rich Li(Ni <i>_x</i> Co <i>_y</i> Mn <i>_z</i>)O ₂ Hollow Fibers with Low Cation Mixing as Highâ€Performance Cathode Materials for Liâ€Ion Batteries. Advanced Science, 2017. 4. 1600262.	5.6	172
24	Effect of Nitrogen Doping Level on the Performance of Nâ€Doped Carbon Quantum Dot/TiO ₂ Composites for Photocatalytic Hydrogen Evolution. ChemSusChem, 2017, 10, 4650-4656.	3.6	171
25	Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy, 2020, 72, 104730.	8.2	171
26	Mesoporeâ€Rich Fe–N–C Catalyst with FeN ₄ –O–NC Singleâ€Atom Sites Delivers Remarka Oxygen Reduction Reaction Performance in Alkaline Media. Advanced Materials, 2022, 34, e2202544.	ble 11.1	168
27	Facile synthesis of hierarchical Znln2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. Journal of Materials Chemistry A, 2013, 1, 4552.	5.2	166
28	Molten NaClâ€Assisted Synthesis of Porous Feâ€N Electrocatalysts with a High Density of Catalytically Accessible FeN ₄ ÂActive Sites and Outstanding Oxygen Reduction Reaction Performance. Advanced Energy Materials, 2021, 11, 2100219.	10.2	160
29	3D carbon nanoframe scaffold-immobilized Ni3FeN nanoparticle electrocatalysts for rechargeable zinc-air batteries' cathodes. Nano Energy, 2017, 40, 382-389.	8.2	153
30	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide: From Homogeneous to Heterogeneous Electrocatalysis. Advanced Energy Materials, 2021, 11, 2003323.	10.2	150
31	Fe Singleâ€Atom Catalysts on MOFâ€5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Advanced Energy Materials, 2022, 12, .	10.2	150
32	Underwater superaerophobic Ni nanoparticle-decorated nickel–molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78, 105375.	8.2	148
33	Self-crosslinking carbon dots loaded ruthenium dots as an efficient and super-stable hydrogen production electrocatalyst at all pH values. Nano Energy, 2019, 65, 104023.	8.2	117
34	Evolution of Zn(II) single atom catalyst sites during the pyrolysis-induced transformation of ZIF-8 to N-doped carbons. Science Bulletin, 2020, 65, 1743-1751.	4.3	115
35	Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light. Advanced Materials, 2014, 26, 5613-5618.	11.1	112
36	Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries. Nanoscale, 2020, 12, 13129-13136.	2.8	110

#	Article	IF	CITATIONS
37	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie - International Edition, 2016, 55, 2167-2170.	7.2	105
38	Facile preparation of black Nb ⁴⁺ self-doped K ₄ Nb ₆ O ₁₇ microspheres with high solar absorption and enhanced photocatalytic activity. Chemical Communications, 2014, 50, 9554.	2.2	92
39	"Naked―Magnetically Recyclable Mesoporous Au–ĵ³â€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System. Advanced Functional Materials, 2017, 27, 1606215.	7.8	85
40	Bubble template synthesis of Sn2Nb2O7 hollow spheres for enhanced visible-light-driven photocatalytic hydrogen production. Chemical Communications, 2013, 49, 9872.	2.2	84
41	Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis. Catalysis Today, 2014, 225, 158-163.	2.2	82
42	Substitutionally Dispersed Highâ€Oxidation CoO <i></i> Clusters in the Lattice of Rutile TiO _{Clusters for Oxygen Evolution Reactions. Advanced Functional Materials, 2021, 31, 2009610.}	7.8	82
43	Engineering local coordination environments and site densities for highâ€performance Feâ€Nâ€C oxygen reduction reaction electrocatalysis. SmartMat, 2021, 2, 154-175.	6.4	81
44	Facile synthesis of ultrathin SnNb ₂ O ₆ nanosheets towards improved visible-light photocatalytic H ₂ -production activity. Chemical Communications, 2016, 52, 8239-8242.	2.2	79
45	Recent Advancements of Porphyrinâ€Like Singleâ€Atom Catalysts: Synthesis and Applications. Small Structures, 2021, 2, 2100007.	6.9	77
46	Architecture-controlled synthesis of $M < sub > x < / sub > O < sub > y < / sub > (M = Ni, Fe, Cu)$ microfibres from seaweed biomass for high-performance lithium ion battery anodes. Journal of Materials Chemistry A, 2015, 3, 22708-22715.	5.2	75
47	A Nanozyme with Photoâ€Enhanced Dual Enzymeâ€Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie, 2019, 131, 12754-12761.	1.6	71
48	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. CrystEngComm, 2012, 14, 4431.	1.3	70
49	Heteronanostructure of Ag particle on titanate nanowire membrane with enhanced photocatalytic properties and bactericidal activities. Journal of Hazardous Materials, 2010, 178, 1109-1114.	6.5	66
50	Silicaâ€Protected Ultrathin Ni ₃ FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH ₃ BH ₃ . Advanced Energy Materials, 2018, 8, 1702780.	10.2	66
51	Ordered PtFelr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
52	Deciphering the Dynamic Structure Evolution of Fe- and Ni-Codoped CoS ₂ for Enhanced Water Oxidation. ACS Catalysis, 2022, 12, 3743-3751.	5.5	59
53	Flower-like CdSe ultrathin nanosheet assemblies for enhanced visible-light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 4677-4680.	2.2	53
54	Hollow PtFe Alloy Nanoparticles Derived from Ptâ€Fe ₃ O ₄ Dimers through a Silicaâ€Protection Reduction Strategy as Efficient Oxygen Reduction Electrocatalysts. Chemistry - A European Journal, 2020, 26, 4090-4096.	1.7	49

#	Article	IF	CITATIONS
55	Type-II ZnO nanorod–SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties. Nanoscale, 2013, 5, 3828.	2.8	48
56	Copper(<scp>i</scp>) cysteine complexes: efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H ₂ production. Chemical Communications, 2015, 51, 12556-12559.	2.2	47
57	pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. Nanoscale, 2016, 8, 3923-3925.	2.8	45
58	Graphene modified mesoporous titania single crystals with controlled and selective photoredox surfaces. Chemical Communications, 2016, 52, 1689-1692.	2.2	45
59	Carbon Nanosheets: Nitrogenâ€Doped Porous Carbon Nanosheets Templated from gâ€C ₃ N ₄ as Metalâ€Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5140-5140.	11.1	44
60	Recent Advances in the Synthesis, Characterization and Application of Zn ⁺ â€containing Heterogeneous Catalysts. Advanced Science, 2016, 3, 1500424.	5 . 6	42
61	Convolutional neural network enhancement of fast-scan low-dose cone-beam CT images for head and neck radiotherapy. Physics in Medicine and Biology, 2020, 65, 035003.	1.6	42
62	A General Route to Prepare Lowâ€Rutheniumâ€Content Bimetallic Electrocatalysts for pHâ€Universal Hydrogen Evolution Reaction by Using Carbon Quantum Dots. Angewandte Chemie, 2020, 132, 1735-1743.	1.6	40
63	Atomic Cationâ€Vacancy Engineering of NiFe‣ayered Double Hydroxides for Improved Activity and Stability towards the Oxygen Evolution Reaction. Angewandte Chemie, 2021, 133, 24817-24824.	1.6	39
64	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 14952-14957.	7.2	38
65	Vertical graphene array for efficient electrocatalytic reduction of oxygen to hydrogen peroxide. Nano Energy, 2022, 96, 107046.	8.2	37
66	Tailoring the microenvironment in Fe–N–C electrocatalysts for optimal oxygen reduction reaction performance. Science Bulletin, 2022, 67, 1264-1273.	4.3	36
67	A Sustainable Strategy for the Synthesis of Pyrochlore H ₄ Nb ₂ O ₇ Hollow Microspheres as Photocatalysts for Overall Water Splitting. ChemPlusChem, 2017, 82, 181-185.	1.3	30
68	Oneâ€Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K ₂ Nb ₂ O ₆ . Chinese Journal of Chemistry, 2014, 32, 485-490.	2.6	24
69	Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Applied Surface Science, 2015, 358, 485-490.	3.1	23
70	Nanocrystals@Hollow Mesoporous Silica Reverseâ€Bumpyâ€Ball Structure Nanoreactors by a Versatile Microemulsionâ€Templated Approach. Small Methods, 2018, 2, 1800105.	4.6	23
71	Controlled synthesis and self-assembly of dendrite patterns of Fe ₃ O ₄ nanoparticles. Nanotechnology, 2009, 20, 035601.	1.3	22
72	Three Phase Interface Engineering for Advanced Catalytic Applications. ACS Applied Energy Materials, 2021, 4, 1045-1052.	2.5	22

#	Article	IF	CITATIONS
73	Interfacial wettability and mass transfer characterizations for gas–liquid–solid tripleâ€phase catalysis. Exploration, 2022, 2, .	5.4	21
74	Graphene oxide/multiâ€walled carbon nanotube—Therminol®66 hybrid nanofluids for lowâ€toâ€medium temperature volumetric solar collectors. International Journal of Energy Research, 2020, 44, 7216-7228.	2.2	20
75	Optical absorption property and photo-thermal conversion performance of Ag@Al2O3 plasmonic nanofluids with Al2O3 nano-shell fabricated by atomic layer deposition. Journal of Molecular Liquids, 2021, 326, 115388.	2.3	20
76	Two-step hydrothermal synthesis of Sn2Nb2O7 nanocrystals with enhanced visible-light-driven H2 evolution activity. Chinese Journal of Catalysis, 2018, 39, 395-400.	6.9	17
77	Highâ€Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Singleâ€Atom Catalysts with Tetradentate N ₂ O ₂ Coordination in a Threeâ€Phase Flow Cell. Angewandte Chemie, 2020, 132, 13157-13162.	1.6	16
78	Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. Angewandte Chemie, 2016, 128, 2207-2210.	1.6	13
79	High-yield preparation of robust gold nanoshells on silica nanorattles with good biocompatiblity. Science Bulletin, 2016, 61, 282-291.	4.3	12
80	Benchmarking of Deformable Image Registration for Multiple Anatomic Sites Using Digital Data Sets With Ground-Truth Deformation Vector Fields. Practical Radiation Oncology, 2021, 11, 404-414.	1.1	12
81	Carbon Nanoframes: Wellâ€Dispersed ZIFâ€Derived Co,Nâ€Coâ€doped Carbon Nanoframes through Mesoporousâ€Silicaâ€Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater.) Tj ETG	Qq11 1.0 .78	43 16 rgBT /C
82	A mild one-step solvothermal route to truncated octahedral magnetite crystals. Particuology, 2014, 15, 51-55.	2.0	9
83	Clinical Enhancement in Al-Based Post-processed Fast-Scan Low-Dose CBCT for Head and Neck Adaptive Radiotherapy. Frontiers in Artificial Intelligence, 2020, 3, 614384.	2.0	9
84	Ordered PtFeIr Intermetallic Nanowires Prepared through a Silicaâ€Protection Strategy for the Oxygen Reduction Reaction. Angewandte Chemie, 2022, 134, .	1.6	8
85	A Rhenium Singleâ€Atom Catalyst for the Electrocatalytic Oxygen Reduction Reaction. ChemPlusChem, 2021, 86, 1635-1639.	1.3	7
86	Photo-thermal characteristics of water-based graphene oxide (GO) nanofluids at reverse-irradiation conditions with different irradiation angles for high-efficiency solar thermal energy harvesting. Renewable Energy, 2022, 195, 516-527.	4.3	6
87	Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer. Technology in Cancer Research and Treatment, 2022, 21, 153303382211057.	0.8	6
88	Phototherapy: Metal–Organicâ€Frameworkâ€Derived Mesoporous Carbon Nanospheres Containing Porphyrinâ€Like Metal Centers for Conformal Phototherapy (Adv. Mater. 38/2016). Advanced Materials, 2016, 28, 8318-8318.	11.1	5
89	Thiolateâ€Mediated Photoinduced Synthesis of Ultrafine Ag ₂ S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, 15176-15181.	1.6	5
90	Zincâ€Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,Nâ€Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	10.2	5

#	Article	IF	CITATIONS
91	Water Splitting: Ni ₃ FeN Nanoparticles Derived from Ultrathin NiFeâ€Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater.) Tj ETQq1 1 0.78	43 14. 2gBT	- <i>Q</i> werlock 1(
92	Hydrogen Evolution: CdS Nanoparticleâ€Decorated Cd Nanosheets for Efficient Visible Lightâ€Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). Advanced Energy Materials, 2016, 6, .	10.2	3
93	Photothermal CO ₂ Hydrogenation: Aluminaâ€Supported CoFe Alloy Catalysts Derived from Layeredâ€Doubleâ€Hydroxide Nanosheets for Efficient Photothermal CO ₂ Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). Advanced Materials, 2018, 30, 1870015.	11.1	3
94	Reassessing effects of Zn2+ toward oxygen electrocatalytic activity in ternary spinel. Science Bulletin, 2020, 65, 974-976.	4.3	2
95	Catalysts: "Naked―Magnetically Recyclable Mesoporous Au–γâ€Fe ₂ O ₃ Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
96	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). Advanced Materials, 2014, 26, 5731-5731.	11.1	0
97	Rücktitelbild: Controllable Synthesis of Ultrathin Transitionâ€Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew.) Tj ETQq1 1 ().7 8.4 314 ı	rgBT Overloo
98	Frontispiz: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie, 2016, 128, .	1.6	0
99	Frontispiece: Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2 S Quantum Dots from Silver Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, .	7.2	O