List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3356235/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monodisperse and Inorganically Capped Sn and Sn/SnO ₂ Nanocrystals for High-Performance Li-Ion Battery Anodes. Journal of the American Chemical Society, 2013, 135, 4199-4202.	13.7	346
2	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	26.0	192
3	Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis. ACS Nano, 2011, 5, 3758-3765.	14.6	164
4	Tuning the Composition of Multicomponent Semiconductor Nanocrystals: The Case of I–III–VI Materials. Chemistry of Materials, 2018, 30, 1446-1461.	6.7	155
5	Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage. Journal of the American Chemical Society, 2014, 136, 12422-12430.	13.7	133
6	Soft surfaces of nanomaterials enable strong phonon interactions. Nature, 2016, 531, 618-622.	27.8	133
7	Solutionâ€Processable Nearâ€IR Photodetectors Based on Electron Transfer from PbS Nanocrystals to Fullerene Derivatives. Advanced Materials, 2009, 21, 683-687.	21.0	121
8	Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals. Chemistry of Materials, 2013, 25, 3753-3757.	6.7	113
9	PbS nanocrystal solar cells with high efficiency and fill factor. Applied Physics Letters, 2010, 97, .	3.3	108
10	Low Driving Voltage and High Mobility Ambipolar Fieldâ€Effect Transistors with PbS Colloidal Nanocrystals. Advanced Materials, 2013, 25, 4309-4314.	21.0	107
11	Highly Monodisperse Bismuth Nanoparticles and Their Three-Dimensional Superlattices. Journal of the American Chemical Society, 2010, 132, 15158-15159.	13.7	91
12	Exploring the Origin of the Temperatureâ€Dependent Behavior of PbS Nanocrystal Thin Films and Solar Cells. Advanced Functional Materials, 2012, 22, 1598-1605.	14.9	71
13	Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals. ACS Nano, 2015, 9, 11134-11142.	14.6	70
14	Spontaneous and reversible hollowing of alloy anode nanocrystals for stable battery cycling. Nature Nanotechnology, 2020, 15, 475-481.	31.5	68
15	Charge‣eparation Dynamics in Inorganic–Organic Ternary Blends for Efficient Infrared Photodiodes. Advanced Functional Materials, 2011, 21, 1988-1992.	14.9	61
16	Size-Dependent Electron Transfer from Colloidal PbS Nanocrystals to Fullerene. Journal of Physical Chemistry Letters, 2010, 1, 1149-1154.	4.6	54
17	Colloidal Synthesis of InSb Nanocrystals with Controlled Polymorphism Using Indium and Antimony Amides. Chemistry of Materials, 2013, 25, 1788-1792.	6.7	51
18	Upscaling Colloidal Nanocrystal Hot-Injection Syntheses via Reactor Underpressure. Chemistry of Materials, 2017, 29, 796-803.	6.7	51

#	Article	IF	CITATIONS
19	Charge transport in semiconductors assembled from nanocrystal quantum dots. Nature Communications, 2020, 11, 2852.	12.8	51
20	Charge separation dynamics in a narrow band gap polymer–PbS nanocrystal blend for efficient hybrid solar cells. Journal of Materials Chemistry, 2012, 22, 24411.	6.7	48
21	From Highly Monodisperse Indium and Indium Tin Colloidal Nanocrystals to Self-Assembled Indium Tin Oxide Nanoelectrodes. ACS Nano, 2012, 6, 4113-4121.	14.6	48
22	Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity. Chemistry of Materials, 2014, 26, 5914-5922.	6.7	44
23	Precision synthesis of colloidal inorganic nanocrystals using metal and metalloid amides. Nanoscale, 2013, 5, 8398.	5.6	42
24	Hole Mobility in Nanocrystal Solids as a Function of Constituent Nanocrystal Size. Journal of Physical Chemistry Letters, 2014, 5, 3522-3527.	4.6	41
25	Determination of the Electronic Energy Levels of Colloidal Nanocrystals using Fieldâ€Effect Transistors and Abâ€Initio Calculations. Advanced Materials, 2014, 26, 5639-5645.	21.0	33
26	Size, Ligand, and Defect-Dependent Electron–Phonon Coupling in Chalcogenide and Perovskite Nanocrystals and Its Impact on Luminescence Line Widths. ACS Photonics, 2020, 7, 1088-1095.	6.6	31
27	Evaluation of Ordering in Single-Component and Binary Nanocrystal Superlattices by Analysis of Their Autocorrelation Functions. ACS Nano, 2011, 5, 1703-1712.	14.6	30
28	Size- and composition-controlled intermetallic nanocrystals via amalgamation seeded growth. Science Advances, 2021, 7, .	10.3	30
29	Sizeâ€Dependent Charge Transfer in Blends of PbS Quantum Dots with a Lowâ€Gap Siliconâ€Bridged Copolymer. Advanced Energy Materials, 2013, 3, 1490-1499.	19.5	29
30	Machine Learning for Analysis of Time-Resolved Luminescence Data. ACS Photonics, 2018, 5, 4888-4895.	6.6	29
31	Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials. Nature Communications, 2019, 10, 4236.	12.8	25
32	Colloidal Phase-Change Materials: Synthesis of Monodisperse GeTe Nanoparticles and Quantification of Their Size-Dependent Crystallization. Chemistry of Materials, 2018, 30, 6134-6143.	6.7	24
33	Cu–In–Te and Ag–In–Te colloidal nanocrystals with tunable composition and size. Chemical Communications, 2016, 52, 10878-10881.	4.1	22
34	Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1384-1392.	4.6	22
35	Low temperature hydrothermal synthesis of battery grade lithium iron phosphate. RSC Advances, 2017, 7, 17763-17767.	3.6	21
36	Measuring the Vibrational Density of States of Nanocrystal-Based Thin Films with Inelastic X-ray Scattering. Journal of Physical Chemistry Letters, 2018, 9, 1561-1567.	4.6	20

#	Article	IF	CITATIONS
37	Optical Properties of Amorphous and Crystalline GeTe Nanoparticle Thin Films: A Phase-Change Material for Tunable Photonics. ACS Applied Nano Materials, 2020, 3, 4314-4320.	5.0	20
38	Composition- and Size-Controlled I–V–VI Semiconductor Nanocrystals. Chemistry of Materials, 2020, 32, 2078-2085.	6.7	16
39	In Situ Measurement and Control of the Fermi Level in Colloidal Nanocrystal Thin Films during Their Fabrication. Journal of Physical Chemistry Letters, 2018, 9, 7165-7172.	4.6	14
40	Dopants and Traps in Nanocrystal-Based Semiconductor Thin Films: Origins and Measurement of Electronic Midgap States. ACS Applied Electronic Materials, 2020, 2, 398-404.	4.3	13
41	Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces. Chimia, 2021, 75, 398.	0.6	13
42	In Situ Monitoring of Cation-Exchange Reaction Shell Growth on Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 24345-24351.	3.1	12
43	Simulating nanocrystal-based solar cells: A lead sulfide case study. Journal of Chemical Physics, 2019, 151, 241104.	3.0	12
44	Surface modification of semiconductor nanocrystals by a methanofullerene carboxylic acid. Journal of Materials Chemistry, 2010, 20, 8470.	6.7	11
45	Metasurface Colloidal Quantum Dot Photodetectors. ACS Photonics, 2022, 9, 482-492.	6.6	11
46	Mapping the Atomistic Structure of Graded Core/Shell Colloidal Nanocrystals. Scientific Reports, 2017, 7, 11718.	3.3	10
47	Scanning microwave microscopy and scanning capacitance microscopy on colloidal nanocrystals. Journal of Applied Physics, 2011, 109, 064313.	2.5	9
48	Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 19848-19855.	3.1	9
49	Recombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift–Diffusion Simulations. ACS Applied Electronic Materials, 2021, 3, 4977-4989.	4.3	8
50	A Shapeâ€Induced Orientation Phase within 3D Nanocrystal Solids. Advanced Materials, 2018, 30, e1802078.	21.0	7
51	Editorial: Colloidal Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Frontiers in Chemistry, 2019, 7, 684.	3.6	6
52	R4Ir13Ge9 (R=La, Ce, Pr, Nd, Sm) and RIr3Ge2 (R=La, Ce, Pr, Nd): Crystal structures with nets of Ir atoms. Journal of Solid State Chemistry, 2012, 196, 72-78.	2.9	5
53	Synthesis of small Ag–Sb–Te nanocrystals with composition control. Journal of Materials Chemistry C, 2020, 8, 15985-15989.	5.5	5
54	Concentration and excitation effects on the exciton dynamics of poly(3-hexylthiophene)/PbS quantum dot blend films. Nanotechnology, 2013, 24, 235707.	2.6	4

#	Article	IF	CITATIONS
55	Variable wavelength photocurrent mapping on PbS quantum dot: fullerene thin films by conductive atomic force microscopy. Semiconductor Science and Technology, 2011, 26, 095002.	2.0	3
56	Optical Transitions in Silver Indium Selenide Nanocrystals: Implications for Light-Emitting and Light-Imaging Applications. ACS Applied Nano Materials, 2021, 4, 11239-11248.	5.0	3
57	Searching for better X-ray and γ-ray photodetectors: structure–composition properties of the TlPb ₂ Br _{5â~`<i>x</i>} I _{<i>x</i>} quaternary system. Materials Advances, 0, , .	5.4	3
58	In Situ Formation of Lithium Polyacrylate Binder for Aqueous Manufacturing and Recycling of Ni-Rich Cathodes. Journal of the Electrochemical Society, 0, , .	2.9	3
59	Engineering of Oxide Protected Gold Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 5824-5830.	4.6	3
60	Phase transitions in germanium telluride nanoparticle phase-change materials studied by temperature-resolved x-ray diffraction. Journal of Applied Physics, 2021, 129, 095102.	2.5	2
61	AFMâ€based photocurrent imaging of epitaxial and colloidal QDs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 426-428.	0.8	1
62	Quasistatic Dielectric Constants Of Colloidal Nanocrystals. , 2011, , .		0
63	Mapping the Local Photoresponse of Epitaxial and Colloidal Quantum Dots by Photoconductive Atomic Force Microscopy. , 2011, , .		0
64	High precision positioning of plasmonic nanoparticle based on damascene process. , 2012, , .		0