Stephen D Meriney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3356094/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct Measurements of Presynaptic Calcium and Calcium-Activated Potassium Currents Regulating Neurotransmitter Release at Cultured <i>Xenopus</i> Nerve–Muscle Synapses. Journal of Neuroscience, 1997, 17, 2990-3001.	3.6	107
2	Lambert-eaton myasthenic syndrome immunoglobulins react with multiple types of calcium channels in small-cell lung carcinoma. Annals of Neurology, 1996, 40, 739-749.	5.3	69
3	Spatial Distribution of Calcium Entry Evoked by Single Action Potentials within the Presynaptic Active Zone. Journal of Neuroscience, 2004, 24, 2877-2885.	3.6	64
4	Single-Pixel Optical Fluctuation Analysis of Calcium Channel Function in Active Zones of Motor Nerve Terminals. Journal of Neuroscience, 2011, 31, 11268-11281.	3.6	45
5	An Excess-Calcium-Binding-Site Model Predicts Neurotransmitter Release at the Neuromuscular Junction. Biophysical Journal, 2013, 104, 2751-2763.	0.5	45
6	Are unreliable release mechanisms conserved from NMJ to CNS?. Trends in Neurosciences, 2013, 36, 14-22.	8.6	43
7	Evaluation of a Novel Calcium Channel Agonist for Therapeutic Potential in Lambert-Eaton Myasthenic Syndrome. Journal of Neuroscience, 2013, 33, 10559-10567.	3.6	40
8	Synaptic Pathophysiology and Treatment of Lambert-Eaton Myasthenic Syndrome. Molecular Neurobiology, 2015, 52, 456-463.	4.0	33
9	The effects of presynaptic calcium channel modulation by roscovitine on transmitter release at the adult frog neuromuscular junction. European Journal of Neuroscience, 2006, 23, 3200-3208.	2.6	30
10	Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones. Journal of Physiology, 1999, 514, 719-728.	2.9	26
11	mGluRs Modulate Strength and Timing of Excitatory Transmission in Hippocampal Area CA3. Molecular Neurobiology, 2011, 44, 93-101.	4.0	25
12	Organization and function of transmitter release sites at the neuromuscular junction. Journal of Physiology, 2013, 591, 3159-3165.	2.9	25
13	Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction. Journal of Neurophysiology, 2015, 113, 2480-2489.	1.8	25
14	Complete reversal of Lambert–Eaton myasthenic syndrome synaptic impairment by the combined use of a K ⁺ channel blocker and a Ca ²⁺ channel agonist. Journal of Physiology, 2014, 592, 3687-3696.	2.9	24
15	Synthesis and Biological Evaluation of a Selective N- and P/Q-Type Calcium Channel Agonist. ACS Medicinal Chemistry Letters, 2012, 3, 985-990.	2.8	23
16	In Search of a Cure: The Development of Therapeutics to Alter the Progression of Spinal Muscular Atrophy. Brain Sciences, 2021, 11, 194.	2.3	19
17	Presynaptic mechanisms controlling calcium-triggered transmitter release at the neuromuscular junction. Current Opinion in Physiology, 2018, 4, 15-24.	1.8	17
18	Transmitter release site organization can predict synaptic function at the neuromuscular junction. Journal of Neurophysiology, 2018, 119, 1340-1355.	1.8	17

STEPHEN D MERINEY

#	Article	IF	CITATIONS
19	Low calcium-induced disruption of active zone structure and function at the frog neuromuscular junction. , 1996, 24, 1-11.		16
20	A Nitric Oxide/Cyclic GMP-Dependent Protein Kinase Pathway Alters Transmitter Release and Inhibition by Somatostatin at a Site Downstream of Calcium Entry. Journal of Neurochemistry, 2008, 72, 1981-1990.	3.9	16
21	Distinct roles of neuroligin-1 and SynCAM1 in synapse formation and function in primary hippocampal neuronal cultures. Neuroscience, 2012, 215, 1-16.	2.3	16
22	New insights into short-term synaptic facilitation at the frog neuromuscular junction. Journal of Neurophysiology, 2015, 113, 71-87.	1.8	16
23	Fast, Ca2+-dependent exocytosis at nerve terminals: Shortcomings of SNARE-based models. Progress in Neurobiology, 2014, 121, 55-90.	5.7	15
24	A high-affinity, partial antagonist effect of 3,4-diaminopyridine mediates action potential broadening and enhancement of transmitter release at NMJs. Journal of Biological Chemistry, 2021, 296, 100302.	3.4	15
25	Lambert–Eaton myasthenic syndrome: mouse passiveâ€ŧransfer model illuminates disease pathology and facilitates testing therapeutic leads. Annals of the New York Academy of Sciences, 2018, 1412, 73-81.	3.8	14
26	Active zone structureâ€function relationships at the neuromuscular junction. Synapse, 2018, 72, e22057.	1.2	13
27	High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons. Hippocampus, 2011, 21, 1302-1317.	1.9	11
28	New Cav2 calcium channel gating modifiers with agonist activity and therapeutic potential to treat neuromuscular disease. Neuropharmacology, 2018, 131, 176-189.	4.1	11
29	Area CA3 interneurons receive two spatially segregated mossy fiber inputs. Hippocampus, 2010, 20, 1003-1009.	1.9	10
30	Impact of spatiotemporal calcium dynamics within presynaptic active zones on synaptic delay at the frog neuromuscular junction. Journal of Neurophysiology, 2018, 119, 688-699.	1.8	10
31	The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release. Journal of Neuroscience, 2020, 40, 3504-3516.	3.6	10
32	G-Protein-Modulated Ca ²⁺ Current With Slowed Activation Does Not Alter the Kinetics of Action Potential-Evoked Ca ²⁺ Current. Journal of Neurophysiology, 2000, 84, 2417-2425.	1.8	9
33	Reported direct aminopyridine effects on voltage-gated calcium channels is a high-dose pharmacological off-target effect of no clinical relevance. Journal of Biological Chemistry, 2018, 293, 16100.	3.4	4
34	Neuromuscular Active Zone Structure and Function in Healthy and Lambert-Eaton Myasthenic Syndrome States. Biomolecules, 2022, 12, 740.	4.0	4
35	Single calcium channels stand out in the crowd. Channels, 2016, 10, 71-72.	2.8	2
36	Microphysiological Modeling of the Structure and Function of Neuromuscular Transmitter Release Sites. Frontiers in Synaptic Neuroscience, 0, 14, .	2.5	2

#	Article	IF	CITATIONS
37	Calcium Homeostasis, Calcium Channels, and Transmitter Release. , 2019, , 121-153.		0