Yusuke Hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3356002/publications.pdf

Version: 2024-02-01

1125271 1039406 21 654 9 13 citations h-index g-index papers 23 23 23 1077 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	JRAB/MICAL-L2 undergoes liquid–liquid phase separation to form tubular recycling endosomes. Communications Biology, 2021, 4, 551.	2.0	5
2	Comprehensive Measurement and Comparison of Ionic Small Molecules Contained in <i>Citrus Unshiu </i> Marc. Using Metabolomic Analysis. Journal of the Japanese Society for Food Science and Technology, 2020, 67, 499-513.	0.1	0
3	Axis elongation during Xenopus tail-bud stage is regulated by GABA expressed in the anterior-to-mid neural tube. International Journal of Developmental Biology, 2019, 63, 37-43.	0.3	3
4	Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development (Cambridge), 2017, 144, 1307-1316.	1.2	42
5	Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. Journal of Cell Biology, 2017, 216, 1371-1386.	2.3	99
6	Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. Development Growth and Differentiation, 2017, 59, 340-350.	0.6	6
7	Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nature Cell Biology, 2017, 19, 375-383.	4.6	121
8	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
9	Cell Boundary Elongation by Non-autonomous Contractility in Cell Oscillation. Current Biology, 2016, 26, 2388-2396.	1.8	64
10	1E41 Establishment of the anisotropic measurement of soft tissue elasticity with rectangular hole indentation and its application to Xenopus gastrula. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 157-158.	0.0	0
11	Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Developmental Biology, 2013, 382, 482-495.	0.9	39
12	Transgenic <i><scp>X</scp>enopus laevis</i> for live imaging in cell and developmental biology. Development Growth and Differentiation, 2013, 55, 422-433.	0.6	33
13	3D08 Estimation of stress distribution in Xenopus laevis embryo from topography and stiffness distribution in its cross section. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 567-568.	0.0	O
14	8C42 Estimation of stress distribution in Xenopus laevis embryo with an environmental scanning electron microscope. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _8C42-18C42-2	0.0	0
15	J028025 Estimation of stress distribution on Xenopus gastrula epithelium with laser ablation method. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _J028025-1J028025-5.	0.0	O
16	MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2011, 138, 385-385.	1.2	3
17	S022013 Estimation of stress distribution in Xenopus laevis embryo by multidirectional measurement. The Proceedings of Mechanical Engineering Congress Japan, 2011, 2011, _S022013-1S022013-5.	0.0	0
18	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2010, 137, 2329-2339.	1.2	65

Yusuke Hara

#	Article	IF	CITATIONS
19	P05. Mechanical force generated by leading edge mesoderm modulates collective cell polarization in axial mesoderm during Xenopus gastrulation. Differentiation, 2010, 80, S18-S19.	1.0	0
20	Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation. PLoS ONE, 2010, 5, e8897.	1.1	36
21	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Journal of Cell Science, 2010, 123, e1-e1.	1.2	O