Yusuke Hara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3356002/publications.pdf Version: 2024-02-01

VUSLIKE HADA

#	Article	IF	CITATIONS
1	Nanoscale architecture of cadherin-based cellÂadhesions. Nature Cell Biology, 2017, 19, 28-37.	4.6	135
2	Basolateral protrusion and apical contraction cooperatively drive Drosophila germ-band extension. Nature Cell Biology, 2017, 19, 375-383.	4.6	121
3	Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. Journal of Cell Biology, 2017, 216, 1371-1386.	2.3	99
4	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2010, 137, 2329-2339.	1.2	65
5	Cell Boundary Elongation by Non-autonomous Contractility in Cell Oscillation. Current Biology, 2016, 26, 2388-2396.	1.8	64
6	Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development (Cambridge), 2017, 144, 1307-1316.	1.2	42
7	Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Developmental Biology, 2013, 382, 482-495.	0.9	39
8	Tissue-Tissue Interaction-Triggered Calcium Elevation Is Required for Cell Polarization during Xenopus Gastrulation. PLoS ONE, 2010, 5, e8897.	1.1	36
9	Transgenic <i><scp>X</scp>enopus laevis</i> for live imaging in cell and developmental biology. Development Growth and Differentiation, 2013, 55, 422-433.	0.6	33
10	Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue. Development Growth and Differentiation, 2017, 59, 340-350.	0.6	6
11	JRAB/MICAL-L2 undergoes liquid–liquid phase separation to form tubular recycling endosomes. Communications Biology, 2021, 4, 551.	2.0	5
12	MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development (Cambridge), 2011, 138, 385-385.	1.2	3
13	Axis elongation during Xenopus tail-bud stage is regulated by GABA expressed in the anterior-to-mid neural tube. International Journal of Developmental Biology, 2019, 63, 37-43.	0.3	3
14	P05. Mechanical force generated by leading edge mesoderm modulates collective cell polarization in axial mesoderm during Xenopus gastrulation. Differentiation, 2010, 80, S18-S19.	1.0	0
15	<i>MID1</i> and <i>MID2</i> are required for <i>Xenopus</i> neural tube closure through the regulation of microtubule organization. Journal of Cell Science, 2010, 123, e1-e1.	1.2	0
16	S022013 Estimation of stress distribution in Xenopus laevis embryo by multidirectional measurement. The Proceedings of Mechanical Engineering Congress Japan, 2011, 2011, _S022013-1S022013-5.	0.0	0
17	8C42 Estimation of stress distribution in Xenopus laevis embryo with an environmental scanning electron microscope. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _8C42-18C42-2	0.0	0
18	J028025 Estimation of stress distribution on Xenopus gastrula epithelium with laser ablation method. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _J028025-1J028025-5.	0.0	0

YUSUKE HARA

#	Article	IF	CITATIONS
19	3D08 Estimation of stress distribution in Xenopus laevis embryo from topography and stiffness distribution in its cross section. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2013, 2013.25, 567-568.	0.0	0
20	1E41 Establishment of the anisotropic measurement of soft tissue elasticity with rectangular hole indentation and its application to Xenopus gastrula. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2014, 2014.26, 157-158.	0.0	0
21	Comprehensive Measurement and Comparison of Ionic Small Molecules Contained in <i>Citrus Unshiu </i> Marc. Using Metabolomic Analysis. Journal of the Japanese Society for Food Science and Technology, 2020, 67, 499-513.	0.1	0