Christian KÃ¹/₄bel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335571/publications.pdf

Version: 2024-02-01

286 papers

11,437 citations

53 h-index 94 g-index

296 all docs

296 docs citations

296 times ranked

14886 citing authors

#	Article	IF	CITATIONS
1	High entropy oxides for reversible energy storage. Nature Communications, 2018, 9, 3400.	12.8	643
2	Towards automated diffraction tomography: Part Iâ€"Data acquisition. Ultramicroscopy, 2007, 107, 507-513.	1.9	452
3	Size-Dependent Absolute Quantum Yields for Size-Separated Colloidally-Stable Silicon Nanocrystals. Nano Letters, 2012, 12, 337-342.	9.1	299
4	Multicolor Silicon Light-Emitting Diodes (SiLEDs). Nano Letters, 2013, 13, 475-480.	9.1	273
5	3D imaging of nanomaterials by discrete tomography. Ultramicroscopy, 2009, 109, 730-740.	1.9	255
6	Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte. Nanoscale, 2016, 8, 3296-3306.	5.6	247
7	Giant Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 1998, 4, 2099-2109.	3.3	240
8	Synthesis and Self-Assembly of Functionalized Hexa-peri-hexabenzocoronenes. Chemistry - A European Journal, 2000, 6, 4327-4342.	3.3	240
9	Multicomponent equiatomic rare earth oxides. Materials Research Letters, 2017, 5, 102-109.	8.7	236
10	Nanoporous Au: An Unsupported Pure Gold Catalyst?. Journal of Physical Chemistry C, 2009, 113, 5593-5600.	3.1	232
11	Recent Advances in Electron Tomography: TEM and HAADF-STEM Tomography for Materials Science and Semiconductor Applications. Microscopy and Microanalysis, 2005, 11, 378-400.	0.4	215
12	Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold. Chemical Communications, 2010, 46, 8353.	4.1	183
13	Efficient Preparation and Catalytic Activity of MgO(111) Nanosheets. Angewandte Chemie - International Edition, 2006, 45, 7277-7281.	13.8	149
14	MgO(111) Nanosheets with Unusual Surface Activity. Journal of Physical Chemistry C, 2007, 111, 12038-12044.	3.1	133
15	Hollow Zinc Oxide Mesocrystals from an Ionic Liquid Precursor (ILP). Advanced Materials, 2008, 20, 1279-1285.	21.0	126
16	Preparation of Monodisperse Silicon Nanocrystals Using Density Gradient Ultracentrifugation. Journal of the American Chemical Society, 2011, 133, 11928-11931.	13.7	121
17	Spatial Separation of Charge Carriers in In ₂ 0 _{3–<i>x</i>} (OH) _{<i>y</i>} Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano, 2016, 10, 5578-5586.	14.6	118
18	Fast kinetics of multivalent intercalation chemistry enabled by solvated magnesium-ions into self-established metallic layered materials. Nature Communications, 2018, 9, 5115.	12.8	114

#	Article	IF	Citations
19	Polycyclic Aromatic Hydrocarbons by Cyclodehydrogenation and Skeletal Rearrangement of Oligophenylenes. Angewandte Chemie International Edition in English, 1997, 36, 1607-1610.	4.4	113
20	CuF ₂ as Reversible Cathode for Fluoride Ion Batteries. Advanced Functional Materials, 2017, 27, 1701051.	14.9	112
21	Grain boundary diffusion of different rare earth elements in Nd-Fe-B sintered magnets by experiment and FEM simulation. Acta Materialia, 2017, 124, 421-429.	7.9	111
22	Density changes in shear bands of a metallic glass determined by correlative analytical transmission electron microscopy. Ultramicroscopy, 2014, 142, 1-9.	1.9	108
23	Nanosized polyphenylene dendrimers based upon pentaphenylbenzene units. Journal of Materials Chemistry, 1997, 7, 1207-1211.	6.7	106
24	Combination of in situ straining and ACOM TEM: A novel method for analysis of plastic deformation of nanocrystalline metals. Ultramicroscopy, 2013, 128, 68-81.	1.9	104
25	Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation. Nature Communications, 2019, 10, 2608.	12.8	104
26	Polymer-Induced Microstructure Variation in Zinc Oxide Crystals Precipitated from Aqueous Solution. Journal of Physical Chemistry B, 2003, 107, 2660-2666.	2.6	102
27	Pyrolysis in the Mesophase:Â A Chemist's Approach toward Preparing Carbon Nano- and Microparticles. Journal of the American Chemical Society, 2002, 124, 13130-13138.	13.7	101
28	Strengthening zones in the Co matrix of WC–Co cemented carbides. Scripta Materialia, 2014, 83, 17-20.	5.2	98
29	Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. Journal of Materials Chemistry, 2012, 22, 3117.	6.7	96
30	Synthesis and crystal packing of large polycyclic aromatic hydrocarbons: hexabenzo[bc,ef,hi,kl,no,qr]coronene and dibenzo[fg,ij]phenanthro[9,10,1,2,3-pqrst]pentaphene. Journal of Materials Chemistry, 2000, 10, 879-886.	6.7	94
31	Tailoring Surface Frustrated Lewis Pairs of In ₂ 0 _{3â^²} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ . Advanced Science. 2018. 5. 1700732.	11.2	91
32	Investigations of voids in the aragonite platelets of nacre. Acta Biomaterialia, 2009, 5, 3038-3044.	8.3	88
33	Self-assembly of a neutral platinum(<scp>ii</scp>) complex into highly emitting microcrystalline fibers through metallophilic interactions. Chemical Communications, 2014, 50, 7269-7272.	4.1	86
34	A ferrocene-based carbon–iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries. Journal of Materials Chemistry, 2010, 20, 1871.	6.7	83
35	Mechanosynthesized BiFeO ₃ Nanoparticles with Highly Reactive Surface and Enhanced Magnetization. Journal of Physical Chemistry C, 2011, 115, 7209-7217.	3.1	82
36	CFx Derived Carbon–FeF ₂ Nanocomposites for Reversible Lithium Storage. Advanced Energy Materials, 2013, 3, 308-313.	19.5	76

#	Article	IF	CITATIONS
37	A Filledâ∈Honeycombâ∈Structured Crystal Formed by Selfâ∈Assembly of a Janus Polyoxometalateâ∈"Silsesquioxane (POMâ∈"POSS) Coâ∈Cluster. Angewandte Chemie - International Edition, 2015, 54, 15699-15704.	13.8	74
38	Characterization and Catalytic-Hydrogenation Behavior of SiO2-Embedded Nanoscopic Pd, Au, and Pd–Au Alloy Colloids. Chemistry - A European Journal, 2006, 12, 2343-2357.	3.3	73
39	Grain boundary diffusion in nanocrystalline Nd-Fe-B permanent magnets with low-melting eutectics. Acta Materialia, 2016, 115, 354-363.	7.9	73
40	Direct observation of organic–organic heteroepitaxy: perylene-tetracarboxylic-dianhydride on hexa-peri-benzocoronene on highly ordered pyrolytic graphite. Surface Science, 2000, 445, 358-367.	1.9	70
41	Direct Evidence of Significant Cation Intermixing in Upconverting Core@Shell Nanocrystals: Toward a New Crystallochemical Model. Chemistry of Materials, 2017, 29, 9238-9246.	6.7	66
42	Electron Cryoâ€Microscopy of TPPS ₄ â<2HCl Tubes Reveals a Helical Organisation Explaining the Origin of their Chirality. ChemPhysChem, 2013, 14, 3209-3214.	2.1	64
43	Morphological Analysis of Disordered Macroporous–Mesoporous Solids Based on Physical Reconstruction by Nanoscale Tomography. Langmuir, 2014, 30, 9022-9027.	3.5	63
44	Impact of sonication pretreatment on carbon nanotubes: A transmission electron microscopy study. Carbon, 2013, 61, 404-411.	10.3	62
45	Strategy to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis. Green Chemistry, 2009, 11, 498.	9.0	61
46	Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 581, 8-15.	5.6	59
47	Controlled Synthesis of Thorium and Uranium Oxide Nanocrystals. Chemistry - A European Journal, 2013, 19, 5297-5305.	3.3	59
48	Nonâ€aqueous Synthesis of Isotropic and Anisotropic Actinide Oxide Nanocrystals. Chemistry - A European Journal, 2012, 18, 8283-8287.	3.3	58
49	Conductivity Optimization of Tysonite-type La _{1–<i>x</i>} Ba _{<i>x</i>} F _{3–<i>x</i>} Solid Electrolytes for Advanced Fluoride Ion Battery. ACS Applied Materials & Diterfaces, 2017, 9, 23707-23715.	8.0	58
50	Evolution of Glassy Carbon Microstructure: In Situ Transmission Electron Microscopy of the Pyrolysis Process. Scientific Reports, 2018, 8, 16282.	3.3	58
51	Nanoporous-gold-based composites: toward tensile ductility. NPG Asia Materials, 2015, 7, e187-e187.	7.9	57
52	Hindered Diffusion in Ordered Mesoporous Silicas: Insights from Pore-Scale Simulations in Physical Reconstructions of SBA-15 and KIT-6 Silica. Journal of Physical Chemistry C, 2018, 122, 12350-12361.	3.1	56
53	Size Tunable Gold Nanorods Evenly Distributed in the Channels of Mesoporous Silica. ACS Nano, 2008, 2, 1205-1212.	14.6	55
54	Enhanced low-temperature lithium storage performance of multilayer graphene made through an improved ionic liquid-assisted synthesis. Journal of Power Sources, 2015, 281, 318-325.	7.8	55

#	Article	IF	CITATIONS
55	Hexagonal Packing of Oligo(m-phenylene ethynylene)s in the Solid State:Â Helical Nanotubules. Journal of the American Chemical Society, 2000, 122, 6134-6135.	13.7	53
56	Untangling dislocation and grain boundary mediated plasticity in nanocrystalline nickel. Acta Materialia, 2014, 65, 295-307.	7.9	53
57	Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography. Journal of Structural Biology, 2002, 138, 58-62.	2.8	52
58	Electrochemical Delithiation/Relithiation of LiCoPO ₄ : A Two-Step Reaction Mechanism Investigated by <i>in Situ</i> X-ray Diffraction, <i>in Situ</i> X-ray Absorption Spectroscopy, and <i>ex Situ</i> ⁷ Li/ ³¹ P NMR Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 17279-17290.	3.1	52
59	Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses. Ultramicroscopy, 2016, 168, 1-6.	1.9	52
60	Hindrance Factor Expression for Diffusion in Random Mesoporous Adsorbents Obtained from Pore-Scale Simulations in Physical Reconstructions. Industrial & Engineering Chemistry Research, 2018, 57, 3031-3042.	3.7	52
61	High resolution electron microscopy of ordered polymers and organic molecular crystals: Recent developments and future possibilities. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1749-1778.	2.1	51
62	Modified synthesis of [Fe/LiF/C] nanocomposite, and its application as conversion cathode material in lithium batteries. Journal of Power Sources, 2011, 196, 5936-5944.	7.8	51
63	Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Materials Characterization, 2016, 113, 26-33.	4.4	49
64	Correlation of the orientation of stacked aragonite platelets in nacre and their connection via mineral bridges. Ultramicroscopy, 2009, 109, 230-236.	1.9	48
65	Assembling Photoluminescent Silicon Nanocrystals into Periodic Mesoporous Organosilica. Journal of the American Chemical Society, 2012, 134, 8439-8446.	13.7	47
66	Charge Generation Layers for Solution Processed Tandem Organic Light Emitting Diodes with Regular Device Architecture. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8132-8137.	8.0	47
67	Size‶unable Photothermal Germanium Nanocrystals. Angewandte Chemie - International Edition, 2017, 56, 6329-6334.	13.8	47
68	Functionalized Hexa-peri-hexabenzocoronenes:Â Stable Supramolecular Order by Polymerization in the Discotic Mesophase. Chemistry of Materials, 2000, 12, 1638-1647.	6.7	46
69	Thorium/uranium mixed oxide nanocrystals: Synthesis, structural characterization and magnetic properties. Nano Research, 2014, 7, 119-131.	10.4	46
70	Hetero-layered MoS2/C composites enabling ultrafast and durable Na storage. Energy Storage Materials, 2019, 21, 115-123.	18.0	46
71	New gold and silver-gold catalysts in the shape of sponges and sieves. Gold Bulletin, 2007, 40, 142-149.	2.7	45
72	Mapping structure and morphology of amorphous organic thin films by 4D-STEM pair distribution function analysis. Microscopy (Oxford, England), 2019, 68, 301-309.	1.5	45

#	Article	IF	Citations
73	Periodic Mesoporous Hydridosilica â^' Synthesis of an "Impossible―Material and Its Thermal Transformation into Brightly Photoluminescent Periodic Mesoporous Nanocrystal Silicon-Silica Composite. Journal of the American Chemical Society, 2011, 133, 5094-5102.	13.7	44
74	Unraveling the Self-Assembly of Heterocluster Janus Dumbbells into Hybrid Cubosomes with Internal Double-Diamond Structure. Journal of the American Chemical Society, 2019, 141, 831-839.	13.7	44
75	Molecular Packing and Morphology of Oligo(m-phenylene ethynylene) Foldamers. Journal of the American Chemical Society, 2002, 124, 8605-8610.	13.7	42
76	Templated Formation of Luminescent Virus-like Particles by Tailor-Made Pt(II) Amphiphiles. Journal of the American Chemical Society, 2018, 140, 2355-2362.	13.7	42
77	Structure and Properties of Nanoglasses. Advanced Engineering Materials, 2018, 20, 1800404.	3.5	42
78	Grain refinement and mechanical properties in ultrafine grained Pd and Pd–Ag alloys produced by HPT. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1776-1783.	5.6	41
79	Near- and off-resonant optical limiting properties of gold–silver alloy nanoparticles for intense nanosecond laser pulses. Journal of Optics (United Kingdom), 2012, 14, 075203.	2.2	41
80	Accurate segmentation of dense nanoparticles by partially discrete electron tomography. Ultramicroscopy, 2012, 114, 96-105.	1.9	41
81	Strain mapping of a triple junction in nanocrystalline Pd. Acta Materialia, 2011, 59, 7380-7387.	7.9	40
82	Ultraâ€Small Plutonium Oxide Nanocrystals: An Innovative Material in Plutonium Science. Chemistry - A European Journal, 2014, 20, 10431-10438.	3.3	40
83	Morphological Analysis of Physically Reconstructed Silica Monoliths with Submicrometer Macropores: Effect of Decreasing Domain Size on Structural Homogeneity. Langmuir, 2015, 31, 7391-7400.	3.5	40
84	Development of a water based process for stable conversion cathodes on the basis of FeF3. Journal of Power Sources, 2016, 313, 213-222.	7.8	39
85	Early deformation mechanisms in the shear affected region underneath a copper sliding contact. Nature Communications, 2020, 11 , 839.	12.8	38
86	Unveiling the Local Atomic Arrangements in the Shear Band Regions of Metallic Glass. Advanced Materials, 2021, 33, e2007267.	21.0	38
87	Morphology–transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Physical Chemistry Chemical Physics, 2020, 22, 11314-11326.	2.8	37
88	From three-dimensional polyphenylene dendrimers to large graphite subunits. Carbon, 1998, 36, 833-837.	10.3	36
89	Polyoxometalate cluster-contained hybrid gelator and hybrid organogel: a new concept of softenization of polyoxometalate clusters. Soft Matter, 2011, 7, 2317.	2.7	36
90	Nanotwinned silver nanowires: Structure and mechanical properties. Acta Materialia, 2015, 92, 299-308.	7.9	36

#	Article	IF	Citations
91	Boosting the power performance of multilayer graphene as lithium-ion battery anode via unconventional doping with in-situ formed Fe nanoparticles. Scientific Reports, 2016, 6, 23585.	3.3	36
92	Defect-mediated curvature and twisting in polymer crystals. Journal of Physical Organic Chemistry, 2000, 13, 816-829.	1.9	34
93	Nanocrystalline Ti2/3Sn1/3O2 as anode material for Li-ion batteries. Journal of Power Sources, 2011, 196, 9689-9695.	7.8	34
94	Separation of Double-Walled Carbon Nanotubes by Size Exclusion Column Chromatography. ACS Nano, 2014, 8, 6756-6764.	14.6	33
95	Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by <i>in-situ</i> transmission electron microscopy nanomechanical testing. Applied Physics Letters, 2014, 104, .	3.3	32
96	Toward new gas-analytical multisensor chips based on titanium oxide nanotube array. Scientific Reports, 2017, 7, 9732.	3.3	32
97	New frontier in printed thermoelectrics: formation of \hat{l}^2 -Ag ₂ Se through thermally stimulated dissociative adsorption leads to high <i>ZT</i> . Journal of Materials Chemistry A, 2020, 8, 16366-16375.	10.3	32
98	Reference nano-dimensional metrology by scanning transmission electron microscopy. Measurement Science and Technology, 2013, 24, 085001.	2.6	31
99	Hierarchical MoS ₂ –carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage. Journal of Materials Chemistry A, 2019, 7, 7553-7564.	10.3	31
100	Looking Inside a Working SiLED. Nano Letters, 2013, 13, 3539-3545.	9.1	30
101	Comprehensive analysis of TEM methods for LiFePO4/FePO4 phase mapping: spectroscopic techniques (EFTEM, STEM-EELS) and STEM diffraction techniques (ACOM-TEM). Ultramicroscopy, 2016, 170, 10-18.	1.9	30
102	Bi ₂ O ₃ nanoparticles encapsulated in surface mounted metal–organic framework thin films. Nanoscale, 2016, 8, 6468-6472.	5.6	30
103	Solution Growth of Ultralong Gold Nanohelices. ACS Nano, 2017, 11, 5538-5546.	14.6	30
104	Subâ€50 nm Channel Vertical Fieldâ€Effect Transistors using Conventional Inkâ€Jet Printing. Advanced Materials, 2017, 29, 1603858.	21.0	30
105	Nano and micro U1-Th O2 solid solutions: From powders to pellets. Journal of Nuclear Materials, 2018, 498, 307-313.	2.7	30
106	In situ TEM studies of micronâ€sized allâ€solidâ€state fluoride ion batteries: Preparation, prospects, and challenges. Microscopy Research and Technique, 2016, 79, 615-624.	2.2	29
107	Direct Imaging of Defect Structures in Pentacene Nanocrystals. Advanced Materials, 2002, 14, 54-57.	21.0	28
108	Effects of ZnO–B ₂ O ₃ Addition on the Microstructure and Microwave Properties of Lowâ€Temperature Sintered Barium Strontium Titanate (<scp>BST</scp>) Thick Films. International Journal of Applied Ceramic Technology, 2013, 10, E200.	2.1	28

#	Article	IF	Citations
109	Formation of size controlled silicon nanocrystals in nitrogen free silicon dioxide matrix prepared by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2014, 116, .	2.5	28
110	Observing the morphology of single-layered embedded silicon nanocrystals by using temperature-stable TEM membranes. Beilstein Journal of Nanotechnology, 2015, 6, 964-970.	2.8	28
111	On ball-milled ODS ferritic steel recrystallization: From as-milled powder particles to consolidated state. Journal of Materials Science, 2015, 50, 2202-2217.	3.7	28
112	Two-dimensional percolation threshold in confined Si nanoparticle networks. Applied Physics Letters, 2016, 108, .	3.3	28
113	Microscopy of wear affected surface produced during sliding of Nimonic 80A against Stellite 6 at 20°C. Materials Science & Degree and Processing, 2003, 357, 412-422.	5.6	27
114	Surface segregation in TiO ₂ -based nanocomposite thin films. Nanotechnology, 2012, 23, 495701.	2.6	27
115	Synthesis of [Co/LiF/C] nanocomposite and its application as cathode in lithium-ion batteries. Journal of Alloys and Compounds, 2012, 530, 121-126.	5.5	27
116	Deformation-induced grain growth and twinning in nanocrystalline palladium thin films. Beilstein Journal of Nanotechnology, 2013, 4, 554-566.	2.8	27
117	Evolution of the surface plasmon resonance of Au:TiO2 nanocomposite thin films with annealing temperature. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	27
118	Potassium polytitanate gas-sensor study by impedance spectroscopy. Analytica Chimica Acta, 2015, 897, 81-86.	5.4	27
119	Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy. Nanoscale, 2017, 9, 12835-12842.	5.6	27
120	(De)Lithiation Mechanism of Hierarchically Layered LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes during High-Voltage Cycling. Journal of the Electrochemical Society, 2019, 166, A5025-A5032.	2.9	27
121	Super-Helically Twisted Strands of Poly(m-phenylene isophthalamide) (MPDI). Macromolecules, 2001, 34, 9053-9058.	4.8	26
122	Preparation of intergrown P/O-type biphasic layered oxides as high-performance cathodes for sodium ion batteries. Journal of Materials Chemistry A, 2021, 9, 13151-13160.	10.3	26
123	Electron microscopic studies on the diffusion of metal ions in epoxy–metal interphases. International Journal of Adhesion and Adhesives, 2010, 30, 170-177.	2.9	25
124	Strain Relaxation and Vacancy Creation in Thin Platinum Films. Physical Review Letters, 2011, 107, 265501.	7.8	25
125	Large-distance rf- and dc-sputtering of epitaxial La1â^'xSrxMnO3 thin films. Thin Solid Films, 2012, 520, 5521-5527.	1.8	25
126	Porosity and Structure of Hierarchically Porous Ni/Al2O3 Catalysts for CO2 Methanation. Catalysts, 2020, 10, 1471.	3.5	25

#	Article	IF	CITATIONS
127	Configurable Resistive Response in BaTiO ₃ Ferroelectric Memristors via Electron Beam Radiation. Advanced Materials, 2020, 32, e1907541.	21.0	25
128	Construction of New Active Sites: Cu Substitution Enabled Surface Frustrated Lewis Pairs over Calcium Hydroxyapatite for CO ₂ Hydrogenation. Advanced Science, 2021, 8, e2101382.	11.2	25
129	Poly(4â€~-vinylhexaphenylbenzene)s: New Carbon-Rich Polymers. Macromolecules, 1998, 31, 6014-6021.	4.8	24
130	Ferrocenyl Functionalized Silver-Chalcogenide Nanoclusters. Inorganic Chemistry, 2011, 50, 3252-3261.	4.0	24
131	Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM. Ultramicroscopy, 2017, 173, 84-94.	1.9	23
132	Electron Beam Effects on Oxide Thin Filmsâ€"Structure and Electrical Property Correlations. Microscopy and Microanalysis, 2019, 25, 592-600.	0.4	23
133	Hexagonal mesoporous silica nanoparticles with large pores and a hierarchical porosity tested for HPLC. Comptes Rendus Chimie, 2005, 8, 627-634.	0.5	22
134	Synthesis of transuranium-based nanocrystals via the thermal decomposition of actinyl nitrates. RSC Advances, 2013, 3, 18271.	3.6	22
135	Effect of oxygen on the microstructure and hydrogen storage properties of V–Ti–Cr–Fe quaternary solid solutions. International Journal of Hydrogen Energy, 2014, 39, 20000-20008.	7.1	22
136	Controlled Solvothermal Routes to Hierarchical 3D Superparticles of Nanoscopic CdS. Chemistry of Materials, 2015, 27, 3666-3682.	6.7	22
137	A facile synthesis of a carbon-encapsulated Fe ₃ O ₄ nanocomposite and its performance as anode in lithium-ion batteries. Beilstein Journal of Nanotechnology, 2013, 4, 699-704.	2.8	21
138	Combined Scanning Transmission Electron Microscopy Tilt- and Focal Series. Microscopy and Microanalysis, 2014, 20, 548-560.	0.4	21
139	Orientation dependent fracture behavior of nanotwinned copper. Applied Physics Letters, 2015, 106, .	3.3	21
140	Luminescent CdSe Superstructures: A Nanocluster Superlattice and a Nanoporous Crystal. Journal of the American Chemical Society, 2017, 139, 1129-1144.	13.7	21
141	Transport under confinement: Hindrance factors for diffusion in core-shell and fully porous particles with different mesopore space morphologies. Microporous and Mesoporous Materials, 2019, 282, 188-196.	4.4	21
142	Photophysics of organically-capped silicon nanocrystals â€" A closer look into silicon nanocrystal luminescence using low temperature transient spectroscopy. Chemical Physics, 2012, 405, 175-180.	1.9	20
143	Light emission, light detection and strain sensing with nanocrystalline graphene. Nanotechnology, 2015, 26, 325202.	2.6	20
144	AuRu/AC as an effective catalyst for hydrogenation reactions. Physical Chemistry Chemical Physics, 2015, 17, 28171-28176.	2.8	20

#	Article	IF	CITATIONS
145	Size-Dependent Oxidation of Monodisperse Silicon Nanocrystals with Allylphenylsulfide Surfaces. Small, 2015, 11, 335-340.	10.0	20
146	In situ observation of deformation processes in nanocrystalline face-centered cubic metals. Beilstein Journal of Nanotechnology, 2016, 7, 572-580.	2.8	20
147	Vanadium Oxyfluoride/Few-Layer Graphene Composite as a High-Performance Cathode Material for Lithium Batteries. Inorganic Chemistry, 2016, 55, 3789-3796.	4.0	20
148	Polyaramid-Based Flexible Antibacterial Coatings Fabricated Using Laser-Induced Carbonization and Copper Electroplating. ACS Applied Materials & Electroplating.	8.0	20
149	Oligophenylenes as building blocks for well-defined graphite subunits. Carbon, 1998, 36, 827-831.	10.3	19
150	Transfer and State Changes of Fluorine at Polytetrafluoroethylene/Titania Boundaries by Mechanical Stressing and Thermal Annealing. Journal of Physical Chemistry C, 2013, 117, 15272-15278.	3.1	19
151	Influence of particle size and fluorination ratio of CF <i>_x</i> precursor compounds on the electrochemical performance of C–FeF ₂ nanocomposites for reversible lithium storage. Beilstein Journal of Nanotechnology, 2013, 4, 705-713.	2.8	19
152	Sorting of Double-Walled Carbon Nanotubes According to Their Outer Wall Electronic Type <i>via</i>) a Gel Permeation Method. ACS Nano, 2015, 9, 3849-3857.	14.6	19
153	Spatial separation of photogenerated electron–hole pairs in solution-grown ZnO tandem n–p core–shell nanowire arrays toward highly sensitive photoelectrochemical detection of hydrogen peroxide. Journal of Materials Chemistry A, 2017, 5, 14397-14405.	10.3	19
154	Bimetallic Pt/Snâ€based Nanoparticles in Ionic Liquids as Nanocatalysts for the Selective Hydrogenation of Cinnamaldehyde. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 120-129.	1.2	19
155	Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catalysis, 2022, 12, 2473-2486.	11.2	19
156	Crystal structure and chemical composition of biomimetic calcium phosphate nanofibers. RSC Advances, 2013, 3, 11301.	3.6	18
157	Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychography. RSC Advances, 2016, 6, 83031-83043.	3.6	18
158	Mechanical Milling Assisted Synthesis and Electrochemical Performance of High Capacity LiFeBO ₃ for Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2166-2172.	8.0	18
159	Digital reality: a model-based approach to supervised learning from synthetic data. Al Perspectives, 2019, 1, .	3.9	18
160	Olefin Ringâ€closing Metathesis under Spatial Confinement: Morphologyâ^'Transport Relationships. ChemCatChem, 2021, 13, 281-292.	3.7	18
161	Grain boundary segregation induced precipitation in a non equiatomic nanocrystalline CoCuFeMnNi compositionally complex alloy. Acta Materialia, 2021, 220, 117281.	7.9	18
162	Synthesis of in situ functionalized iron oxide nanoparticles presenting alkyne groups via a continuous process using near-critical and supercritical water. Journal of Supercritical Fluids, 2013, 82, 83-95.	3.2	17

#	Article	IF	Citations
163	Exchange-stiffness constant of a Nd-Fe-B based nanocomposite determined by magnetic neutron scattering. Applied Physics Letters, 2013, 103, .	3.3	17
164	Tailoring the 3D Structure of Pd Nanocatalysts Supported on Mesoporous Carbon for Furfural Hydrogenation. ChemNanoMat, 2018, 4, 1125-1132.	2.8	17
165	Li ⁺ /Na ⁺ Ion Exchange in Layered Na _{2/3} : A Simple and Fast Way to Synthesize O3/O2-Type Layered Oxides. Chemistry of Materials, 2021, 33, 5606-5617.	6.7	16
166	Influence of structural variations on high-resolution electron microscopy images of poly[1,6-di(N-carbazolyl)2,4-hexadiyne] nanocrystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1651-1673.	0.6	15
167	Ferroelectric vs. structural properties of large-distance sputtered epitaxial LSMO/PZT heterostructures. AIP Advances, 2012, 2, .	1.3	15
168	Site-specific chirality in magnetic transitions. Journal of Magnetism and Magnetic Materials, 2012, 324, 2723-2726.	2.3	15
169	Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride. Solid State Sciences, 2014, 30, 36-43.	3.2	15
170	3D Nanofabrication via Chemoâ€Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials, 2018, 30, e1800233.	21.0	15
171	Anion Doping of Ferromagnetic Thin Films of La0.74Sr0.26MnO3â^Î via Topochemical Fluorination. Materials, 2018, 11, 1204.	2.9	15
172	Whole-Cell Analysis of Low-Density Lipoprotein Uptake by Macrophages Using STEM Tomography. PLoS ONE, 2013, 8, e55022.	2.5	15
173	Electron Tomography of Nanostructured Materials – Towards a Quantitative 3D Analysis with Nanometer Resolution. Materials Science Forum, 0, 638-642, 2517-2522.	0.3	14
174	Variation of the deformation mechanisms in a nanocrystalline Pd–10at.% Au alloy at room and cryogenic temperatures. International Journal of Plasticity, 2014, 60, 40-57.	8.8	14
175	In depth nano spectroscopic analysis on homogeneously switching double barrier memristive devices. Journal of Applied Physics, 2017, 121, 245307.	2.5	14
176	Digitization in Catalysis Research: Towards a Holistic Description of a Ni/Al ₂ O ₃ Reference Catalyst for CO ₂ Methanation. ChemCatChem, 2022, 14, .	3.7	14
177	Microstructure of free-standing epitaxial Ni–Mn–Ga films before and after variant reorientation. Scripta Materialia, 2012, 66, 566-569.	5.2	13
178	Facile synthesis of C–FeF ₂ nanocomposites from CFx: influence of carbon precursor on reversible lithium storage. RSC Advances, 2018, 8, 36802-36811.	3.6	13
179	Microfluidic Crystallization of Surfactant-Free Doped Zinc Sulfide Nanoparticles for Optical Bioimaging Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 44074-44087.	8.0	13
180	Unveiling local atomic bonding and packing of amorphous nanophases via independent component analysis facilitated pair distribution function. Acta Materialia, 2021, 212, 116932.	7.9	13

#	Article	IF	Citations
181	Structural and Electrochemical Insights from the Fluorination of Disordered Mn-Based Rock Salt Cathode Materials. Chemistry of Materials, 2022, 34, 2268-2281.	6.7	13
182	Silicon nanocrystals prepared by plasma enhanced chemical vapor deposition: Importance of parasitic oxidation for third generation photovoltaic applications. Applied Physics Letters, 2012, 101, 193103.	3.3	12
183	Growth of Nanolaminates of Thermoelectric Bi2Te3/Sb2Te3by Atomic Layer Deposition. ECS Journal of Solid State Science and Technology, 2014, 3, P95-P100.	1.8	12
184	Fatigue Behavior of Ultrafine-Grained Medium Carbon Steel with Different Carbide Morphologies Processed by High Pressure Torsion. Metals, 2015, 5, 891-909.	2.3	12
185	Quantifying the performance of a hybrid pixel detector with GaAs:Cr sensor for transmission electron microscopy. Ultramicroscopy, 2021, 227, 113298.	1.9	12
186	From Molecule to Materials: Crystalline Superlattices of Nanoscopic CdS Clusters. Chemistry - A European Journal, 2011, 17, 14394-14398.	3.3	11
187	LiF/Fe/V2O5 nanocomposite as high capacity cathode for lithium ion batteries. Journal of Power Sources, 2014, 267, 203-211.	7.8	11
188	Size-induced changes of structural and ferromagnetic properties in La1- <i>x</i> Sr <i>x</i> MnO3 nanoparticles. Journal of Applied Physics, 2017, 121, .	2.5	11
189	Exemplar-based inpainting as a solution to the missing wedge problem in electron tomography. Ultramicroscopy, 2018, 191, 1-10.	1.9	11
190	First-time synthesis of a magnetoelectric core–shell composite <i>via</i> conventional solid-state reaction. Nanoscale, 2020, 12, 15677-15686.	5.6	11
191	Comprehensive Characterization of a Mesoporous Cerium Oxide Nanomaterial with High Surface Area and High Thermal Stability. Langmuir, 2021, 37, 2563-2574.	3.5	11
192	Exchange bias in UO2/Fe3O4 thin films above the Néel temperature of UO2. Applied Physics Letters, 2014, 105, .	3.3	10
193	Structural study of growth, orientation and defects characteristics in the functional microelectromechanical system material aluminium nitride. Journal of Applied Physics, 2015, 117, 014301.	2.5	10
194	Sizeâ€Selective Separation and Purification of "Waterâ€Soluble―Organically Capped Brightly Photoluminescent Silicon Nanocrystals. Particle and Particle Systems Characterization, 2015, 32, 301-306.	2.3	10
195	Enhanced cellular uptake of size-separated lipophilic silicon nanoparticles. Scientific Reports, 2017, 7, 43731.	3.3	10
196	The effect of tungsten on microstructure and mechanical performance of an ultrafine Fe-Cr steel. Materials Letters, 2018, 227, 292-295.	2.6	10
197	Nanocrystalline graphene at high temperatures: insight into nanoscale processes. Nanoscale Advances, 2019, 1, 2485-2494.	4.6	10
198	Quantifying Morphology and Diffusion Properties of Mesoporous Carbon From High-Fidelity 3D Reconstructions. Microscopy and Microanalysis, 2019, 25, 891-902.	0.4	10

#	Article	IF	Citations
199	First results from in situ transmission electron microscopy studies of all-solid-state fluoride ion batteries. Journal of Power Sources, 2020, 466, 228283.	7.8	10
200	Ordering mechanism of stackedCdSeâ·ZnSxSe1â^'xquantum dots: A combined reciprocal-space and real-space approach. Physical Review B, 2005, 72, .	3.2	9
201	TEM analyses of wurtzite InGaN islands grown by MOVPE and MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1679-1682.	0.8	9
202	ALD Growth of PbTe and PbSe Superlattices for Thermoelectric Applications. ECS Transactions, 2013, 58, 131-139.	0.5	9
203	Insights into the intraparticle morphology of dendritic mesoporous silica nanoparticles from electron tomographic reconstructions. Journal of Colloid and Interface Science, 2021, 592, 296-309.	9.4	9
204	Polymer Microscopy: Current Challenges. Polymer Reviews, 2010, 50, 231-234.	10.9	8
205	Microstructure and residual stress of magnetron sputtered nanocrystalline palladium and palladium gold films on polymer substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, $2011, 29, \ldots$	2.1	8
206	Dynamic Control Over Electronic Transport in 3D Bulk Nanographene via Interfacial Charging. Advanced Functional Materials, 2014, 24, 3494-3500.	14.9	8
207	Decomposition of amorphous Si2C by thermal annealing. Thin Solid Films, 2014, 552, 232-240.	1.8	8
208	Atomic Layer Deposition of Nanolaminate Structures of Alternating PbTe and PbSe Thermoelectric Films. ECS Journal of Solid State Science and Technology, 2014, 3, P207-P212.	1.8	8
209	Tracing intermediate phases duringÂcrystallization in a Ni–Zr metallic glass. Acta Materialia, 2020, 186, 396-404.	7.9	8
210	Generating digital twins of mesoporous silica by graph-based stochastic microstructure modeling. Computational Materials Science, 2021, 187, 109934.	3.0	8
211	Molecular vacancies in herringbone crystals. Philosophical Magazine, 2004, 84, 1955-1976.	1.6	7
212	Structural investigation of growth and dissolution of nano-islands grown by molecular beam epitaxy. Journal of Crystal Growth, 2008, 310, 748-756.	1.5	7
213	Designing Structurally Ordered Pt/Sn Nanoparticles in Ionic Liquids and their Enhanced Catalytic Performance. ChemNanoMat, 2020, 6, 1854-1862.	2.8	7
214	Encoding Information on the Excited State of a Molecular Spin Chain. Advanced Functional Materials, 2021, 31, 2009467.	14.9	7
215	New Insight into Desodiation/Sodiation Mechanism of MoS ₂ : Sodium Insertion in Amorphous Mo–S Clusters. ACS Applied Materials & Distribution (13, 40481-40488).	8.0	7
216	NaCl-template-based synthesis of TiO ₂ -Pd/Pt hollow nanospheres for H ₂ O ₂ direct synthesis and CO oxidation. Nanoscale, 2021, 13, 2005-2011.	5.6	7

#	Article	IF	CITATIONS
217	Sulfur-Containing Conjugated Polymers. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 120, 77-93.	1.6	6
218	Scanning/transmission electron microscopy and dual-beam sample preparation for the analysis of crystalline materials. Journal of Crystal Growth, 2005, 275, e1849-e1856.	1.5	6
219	Metastable phase formation during flame spray pyrolysis of ZrO2(Y2O3)–Al2O3 nanoparticles. Scripta Materialia, 2011, 64, 781-784.	5.2	6
220	Synthesis of nanocrystalline solid solutions AlySn1 \hat{a} 'yO2 \hat{a} 'y/2 (y = 0.57, 0.4) investigated by XRD, 27Al/119Sn MAS NMR, and MA¶ssbauer spectroscopy. RSC Advances, 2012, 2, 10700.	3.6	6
221	Microstructural variations in Cu/Nb and Al/Nb nanometallic multilayers. Applied Physics Letters, 2013, 102, .	3.3	6
222	Synthesis and characterization of PbTe thin films by atomic layer deposition. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 1329-1333.	1.8	6
223	Nanowire facilitated transfer of sensitive TEM samples in a FIB. Ultramicroscopy, 2020, 219, 113075.	1.9	6
224	Symmetry and Topology of Twin Boundaries and Five-Fold Twin Boundaries in Soft Crystals. Langmuir, 2021, 37, 10291-10297.	3.5	6
225	Application of Electron Tomography for Semiconductor Device Analysis. AIP Conference Proceedings, 2006, , .	0.4	5
226	Towards a Quantitative Understanding in Electron Tomography. Microscopy and Microanalysis, 2009, 15, 602-603.	0.4	5
227	High Temperature Tribocorrosion. , 2010, , 331-398.		5
228	Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals. Applied Surface Science, 2016, 377, 238-243.	6.1	5
229	A Dendritic Amphiphile for Efficient Control of Biomimetic Calcium Phosphate Mineralization. Macromolecular Bioscience, 2017, 17, 1600524.	4.1	5
230	Light Driven Water Oxidation Coupled With Câ€N Coupling Reaction Using a Hybrid Cuâ€PW ₁₂ O ₄₀ Based Softâ€Oxometalate. ChemistrySelect, 2019, 4, 1994-2000.	1.5	5
231	Stabilizing self-assembled nano-objects using light-driven tetrazole chemistry. Polymer Chemistry, 2021, 12, 1627-1634.	3.9	5
232	Machine Learning Approach to Community Detection in a High-Entropy Alloy Interaction Network. ACS Omega, 2022, 7, 12978-12992.	3.5	5
233	Microstructural Study of MgB2 in the LiBH4-MgH2 Composite by Using TEM. Nanomaterials, 2022, 12, 1893.	4.1	5
234	Microstructural and compositional analyses of GaNâ€based nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 1822-1836.	1.5	4

#	Article	IF	CITATIONS
235	Nanocrystalline solid solutions AlySn $1\hat{a}$ °yO $2\hat{a}$ °y/2 (y=0.57, 0.4) as electrode materials for lithium-ion batteries. Journal of Power Sources, 2013, 229, 149-158.	7.8	4
236	High-resolution transmission electron microscope observations of multiwalled carbon nanotube microstructures grown by plasma enhanced chemical vapor deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 031805.	1.2	4
237	Microstructure Analysis of ALD Bi ₂ Te ₃ /Sb ₂ Te ₃ Thermoelectric Nanolaminates. ECS Transactions, 2013, 58, 59-66.	0.5	4
238	The influence of molecular mobility on the properties of networks of gold nanoparticles and organic ligands. Beilstein Journal of Nanotechnology, 2014, 5, 1664-1674.	2.8	4
239	Cholesteryl Hemisuccinate Monolayers Efficiently Control Calcium Phosphate Nucleation and Growth. Crystal Growth and Design, 2017, 17, 5764-5774.	3.0	4
240	Dry adhesives from carbon nanofibers grown in an open ethanol flame. Beilstein Journal of Nanotechnology, 2017, 8, 2719-2728.	2.8	4
241	Low temperature structural stability of Fe ₉₀ Sc ₁₀ nanoglasses. Materials Research Letters, 2018, 6, 178-183.	8.7	4
242	Towards 3D crystal orientation reconstruction using automated crystal orientation mapping transmission electron microscopy (ACOM-TEM). Beilstein Journal of Nanotechnology, 2018, 9, 602-607.	2.8	4
243	In Situ TEM Observation of Cooperative Grain Rotations and the Bauschinger Effect in Nanocrystalline Palladium. Nanomaterials, 2021, 11, 432.	4.1	4
244	In Situ Generated Shear Bands in Metallic Glass Investigated by Atomic Force and Analytical Transmission Electron Microscopy. Metals, 2022, 12, 111.	2.3	4
245	Structure and Properties of Non-Classical Polymers. XI. Heteroatomic Analogues of Poly(1,3-phenylenemethylene)'s. Bulletin of the Chemical Society of Japan, 1997, 70, 1517-1521.	3.2	3
246	3D Imaging of Nanomaterials by Discrete Tomography. Microscopy and Microanalysis, 2006, 12, 1568-1569.	0.4	3
247	Electron Tomographic Characterization of ErSi2 and GexSi1-x Nanoparticles Prepared by Doping of 4H-SiC. Microscopy and Microanalysis, 2006, 12, 1546-1547.	0.4	3
248	Optical and charge transport properties of a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Culn</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	ω3.2 νw>⊂mml:	mñ>1
249	Patterned Deposition of Allophane Nanoparticles on Silicon Substrates. Clays and Clay Minerals, 2012, 60, 456-463.	1.3	3
250	Self-organization of mesoscopic silver wires by electrochemical deposition. Beilstein Journal of Nanotechnology, 2014, 5, 1285-1290.	2.8	3
251	Reversible In-Situ TEM Electrochemical studies of Fluoride Ion Battery. Microscopy and Microanalysis, 2014, 20, 1620-1621.	0.4	3
252	<i>Bombyx mori</i> silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels. Beilstein Journal of Nanotechnology, 2018, 9, 187-204.	2.8	3

#	Article	IF	Citations
253	Solar Fuels: Tailoring Surface Frustrated Lewis Pairs of In ₂ O _{3â^¹} <i>_x</i> (OH) _y for Gasâ€Phase Heterogeneous Photocatalytic Reduction of CO ₂ by Isomorphous Substitution of In ³⁺ with Bi ³⁺ (Adv. Sci. 6/2018). Advanced Science, 2018, 5, 1870034.	11.2	3
254	On the formation of \hat{l} ±-alumina single crystal platelets through eggshell membrane bio-templating. Scripta Materialia, 2021, 195, 113716.	5.2	3
255	Elektronenmikroskopische Darstellung elektrolytischer Oxidschichten auf AA2214. Praktische Metallographie/Practical Metallography, 2009, 46, 236-251.	0.3	3
256	3-D Electron Microscopy for Nano-Technology and the IC Industry. Microscopy and Microanalysis, 2002, 8, 1104-1105.	0.4	2
257	Application of Electron Tomography for Semiconductor Device Analysis. Microscopy and Microanalysis, 2006, 12, 1552-1553.	0.4	2
258	TFS: Combined Tilt- and Focal Series Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 786-787.	0.4	2
259	Grain growth mechanisms in ultrafine-grained steel: an electron backscatter diffraction and in situ TEM study. Journal of Materials Science, 2019, 54, 10489-10505.	3.7	2
260	Flash Solid–Solid Synthesis of Silicon Oxide Nanorods. Small, 2020, 16, 2001435.	10.0	2
261	Microstructure of Aragonite Platelets in Nacre. Microscopy and Microanalysis, 2009, 15, 900-901.	0.4	1
262	Radial Distribution Function Imaging by Diffraction Scanning Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 488-489.	0.4	1
263	Combined Tilt- and Focal-Series Tomography for HAADF-STEM. Microscopy Today, 2016, 24, 26-31.	0.3	1
264	Electron Beam Effects on Silicon Oxide Films – Structure and Electrical Properties. Microscopy and Microanalysis, 2018, 24, 1810-1811.	0.4	1
265	MOF-templated synthesis of 3D Bi2O3 supracrystals with bcc packing. Nanoscale, 2018, 10, 17099-17104.	5.6	1
266	4D-STEM Pair Distribution Function Mapping of the Morphology and Structure of Amorphous Organic Materials. Microscopy and Microanalysis, 2019, 25, 1944-1945.	0.4	1
267	Understanding Hindered Diffusion & Flow in Hierarchical Porous Networks Combining Electron Tomography and Pore-Scale Simulations. Microscopy and Microanalysis, 2019, 25, 406-407.	0.4	1
268	Electron Tomography for 3D Imaging of Nanoscale Materials. Praktische Metallographie/Practical Metallography, 2018, 55, 527-538.	0.3	1
269	Low Dose High Resolution Electron Microscopy (HREM) Analysis of Regularly Twisted Poly(m-Phenylene Diisophthalamide) (MPDI) Fibers. Microscopy and Microanalysis, 2000, 6, 1118-1119.	0.4	0
270	A New Automated Method for Fast and Reliable Tilt-Series Acquisition in Electron Tomography. Microscopy and Microanalysis, 2002, 8, 792-793.	0.4	0

#	Article	IF	CITATIONS
271	TEM Analysis of Aluminum Anodization Layers – Cryo-EFTEM and Electron Tomography. Microscopy and Microanalysis, 2006, 12, 1580-1581.	0.4	0
272	Electron Tomography for Analysis of Catalysts. Microscopy and Microanalysis, 2008, 14, 1074-1075.	0.4	0
273	Polymer Penetration of Nanoporous Aluminum Anodic Layers – Analytical cryoTEM and Electron Tomography Analysis in Corrosion Protection,. Microscopy and Microanalysis, 2009, 15, 990-991.	0.4	0
274	Microstructure of Sol-Gel Derived Nanoscaled La0.6Sr0.4CoO3-Î [*] Cathodes for Intermediate-Temperature SOFCs. ECS Transactions, 2011, 35, 1909-1918.	0.5	0
275	Ion-beam-treated strained AlGaN/GaN multi-quantum wells: HAADF-STEM, HRTEM, Raman and HRXRD characterizations. Radiation Effects and Defects in Solids, 2012, 167, 612-620.	1.2	0
276	Synthesis and electrochemical performance of nanocrystalline Al0.4Mg0.2Sn0.4O1.6 and Al0.25Mg0.38Sn0.38O1.5 investigated by in situ XRD, 27Al/119Sn MAS NMR, 119Sn Mössbauer spectroscopy, and galvanostatic cycling. Journal of Materials Chemistry A, 2013, 1, 13842.	10.3	0
277	Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes. , 2013, , .		0
278	Chemical Vapor Synthesis of FeO _{<i>x</i>} â€"BaTiO ₃ Nanocomposites. Journal of the American Ceramic Society, 2015, 98, 1724-1730.	3.8	0
279	Charge generation layers for all-solution processed organic tandem light emitting diodes with regular device architecture. , 2015, , .		0
280	Imaging the Structural Evolution in Nanocrystalline Metals during Mechanical Deformation. Microscopy and Microanalysis, 2017, 23, 748-749.	0.4	0
281	Understanding the Self-Assembly of a Janus-type POM-POSS Co-Cluster from Low-dose Cryo STEM. Microscopy and Microanalysis, 2017, 23, 1874-1875.	0.4	0
282	Understanding Structure Changes during Cycling of MoS2-based Mg Batteries. Microscopy and Microanalysis, 2019, 25, 2042-2043.	0.4	0
283	Quantifying the 3D Distribution of Pd Nanocatalysts Supported on Mesoporous Carbon for Furfural Hydrogenation. Microscopy and Microanalysis, 2019, 25, 426-427.	0.4	0
284	Electron tomography of microelectronic device interconnects. International Journal of Materials Research, 2006, 97, 880-884.	0.3	0
285	Investigation of InxGa1â^'x N islands with electron microscopy. , 2005, , 17-20.		0
286	Electron tomography of microelectronic device interconnects. International Journal of Materials Research, 2022, 97, 880-884.	0.3	0