
Arne W Mould

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3355373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long read sequencing reveals novel isoforms and insights into splicing regulation during cell state changes. BMC Genomics, 2022, 23, 42.	2.8	11
2	Kalirin as a Novel Treatment Target for Cognitive Dysfunction in Schizophrenia. CNS Drugs, 2022, 36, 1-16.	5.9	8
3	Cellular calcium in bipolar disorder: systematic review and meta-analysis. Molecular Psychiatry, 2021, 26, 4106-4116.	7.9	46
4	Targeting synaptic plasticity in schizophrenia: insights from genomic studies. Trends in Molecular Medicine, 2021, 27, 1022-1032.	6.7	17
5	The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nature Communications, 2020, 11, 2782.	12.8	17
6	The Oxford study of Calcium channel Antagonism, Cognition, Mood instability and Sleep (OxCaMS): study protocol for a randomised controlled, experimental medicine study. Trials, 2019, 20, 120.	1.6	17
7	Blimp-1/PRDM1 is a critical regulator of Type III Interferon responses in mammary epithelial cells. Scientific Reports, 2018, 8, 237.	3.3	14
8	Smchd1 regulates long-range chromatin interactions on the inactive X chromosome and at Hox clusters. Nature Structural and Molecular Biology, 2018, 25, 766-777.	8.2	84
9	Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming. Cell Reports, 2018, 24, 1977-1985.e7.	6.4	31
10	PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation. Science, 2017, 356, 1081-1084.	12.6	220
11	Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation. Scientific Reports, 2017, 7, 6793.	3.3	15
12	The transcriptional repressor Blimp1 is expressed in rare luminal progenitors and is essential for mammary gland development. Development (Cambridge), 2016, 143, 1663-1673.	2.5	15
13	Single-cell RNA-seq reveals cell type-specific transcriptional signatures at the maternal–foetal interface during pregnancy. Nature Communications, 2016, 7, 11414.	12.8	86
14	Blimp1/Prdm1 Functions in Opposition to Irf1 to Maintain Neonatal Tolerance during Postnatal Intestinal Maturation. PLoS Genetics, 2015, 11, e1005375.	3.5	30
15	Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes and Development, 2015, 29, 2108-2122.	5.9	83
16	Smchd1 regulates a subset of autosomal genes subject to monoallelic expression in addition to being critical for X inactivation. Epigenetics and Chromatin, 2013, 6, 19.	3.9	88
17	The Nonconventional MHC Class II Molecule DM Governs Diabetes Susceptibility in NOD Mice. PLoS ONE, 2013, 8, e56738.	2.5	20
18	Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes and Development, 2012, 26, 2063-2074.	5.9	63

Arne W Mould

#	Article	IF	CITATIONS
19	Alternative Splicing Regulates Prdm1/Blimp-1 DNA Binding Activities and Corepressor Interactions. Molecular and Cellular Biology, 2012, 32, 3403-3413.	2.3	17
20	Menin and p53 have non-synergistic effects on tumorigenesis in mice. BMC Cancer, 2012, 12, 252.	2.6	10
21	The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10585-10590.	7.1	120
22	Alterations in Gene Expression in MEN1-Associated Insulinoma Development. Pancreas, 2010, 39, 1140-1146.	1.1	7
23	Dual Loss of Rb1 and Trp53 in the Adrenal Medulla Leads to Spontaneous Pheochromocytoma. Neoplasia, 2010, 12, 235-243.	5.3	11
24	Melanocyte homeostasis in vivo tolerates <i>Rb1</i> loss in a developmentally independent fashion. Pigment Cell and Melanoma Research, 2010, 23, 564-570.	3.3	2
25	Global expression profiling of sex cord stromal tumors from <i>Men1</i> heterozygous mice identifies altered TGFâ€Î² signaling, decreased Gata6 and increased Csf1r expression. International Journal of Cancer, 2009, 124, 1122-1132.	5.1	12
26	Dual loss of <i>Rb1</i> and <i>Trp53</i> in melanocytes perturbs melanocyte homeostasis and genetic stability in vitro but does not cause melanoma or pigmentation defects in vivo. Pigment Cell and Melanoma Research, 2009, 22, 328-330.	3.3	2
27	Identification of <i>ARHGEF17</i> , <i>DENND2D</i> , <i>FGFR3,</i> and <i>RB1</i> mutations in melanoma by inhibition of nonsenseâ€mediated mRNA decay. Genes Chromosomes and Cancer, 2008, 47, 1076-1085.	2.8	22
28	Global expression profiling of murine MEN1â€associated tumors reveals a regulatory role for menin in transcription, cell cycle and chromatin remodelling. International Journal of Cancer, 2007, 121, 776-783.	5.1	20
29	Melanocytes in conditional Rb-/- mice are normal in vivo but exhibit proliferation and pigmentation defects in vitro. Pigment Cell & Melanoma Research, 2005, 18, 252-264.	3.6	17
30	Transgenic Overexpression of Vascular Endothelial Growth Factor-B Isoforms by Endothelial Cells Potentiates Postnatal Vessel Growth In Vivo and In Vitro. Circulation Research, 2005, 97, e60-70.	4.5	48
31	Tyrosinase-Cre mice for tissue-specific gene ablation in neural crest and neuroepithelial-derived tissues. Genesis, 2003, 37, 131-138.	1.6	44
32	Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis and Rheumatism, 2003, 48, 2660-2669.	6.7	118
33	Elemental signals regulating eosinophil accumulation in the lung. Immunological Reviews, 2001, 179, 173-181.	6.0	207
34	The Effect of IL-5 and Eotaxin Expression in the Lung on Eosinophil Trafficking and Degranulation and the Induction of Bronchial Hyperreactivity. Journal of Immunology, 2000, 164, 2142-2150.	0.8	171
35	Mice Lacking the Vascular Endothelial Growth Factor-B Gene (<i>Vegfb</i>) Have Smaller Hearts, Dysfunctional Coronary Vasculature, and Impaired Recovery From Cardiac Ischemia. Circulation Research, 2000, 86, E29-35.	4.5	250
36	Early pregnancy factor suppresses experimental autoimmune encephalomyelitis induced in Lewis rats with myelin basic protein and in SJL/J mice with myelin proteolipid protein peptide 139-151. Journal of the Neurological Sciences, 2000, 182, 5-15.	0.6	33

#	Article	IF	CITATIONS
37	Cellular and molecular regulation of eosinophil trafficking to the lung. Immunology and Cell Biology, 1998, 76, 454-460.	2.3	31