Gregorio Laucirica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354572/publications.pdf

Version: 2024-02-01

933264 1372474 10 400 10 10 citations g-index h-index papers 11 11 11 307 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. Nanoscale, 2021, 13, 11232-11241.	2.8	11
2	Nanofluidic osmotic power generators – advanced nanoporous membranes and nanochannels for blue energy harvesting. Chemical Science, 2021, 12, 12874-12910.	3.7	60
3	Biomimetic solid-state nanochannels for chemical and biological sensing applications. TrAC - Trends in Analytical Chemistry, 2021, 144, 116425.	5.8	47
4	High-sensitivity detection of dopamine by biomimetic nanofluidic diodes derivatized with poly(3-aminobenzylamine). Nanoscale, 2020, 12, 18390-18399.	2.8	20
5	Shape matters: Enhanced osmotic energy harvesting in bullet-shaped nanochannels. Nano Energy, 2020, 71, 104612.	8.2	80
6	Electrochemically addressable nanofluidic devices based on PET nanochannels modified with electropolymerized poly- <i>o</i> -aminophenol films. Nanoscale, 2020, 12, 6002-6011.	2.8	22
7	Polyaniline for Improved Blue Energy Harvesting: Highly Rectifying Nanofluidic Diodes Operating in Hypersaline Conditions via One-Step Functionalization. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28148-28157.	4.0	39
8	Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating of Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Reversible Gating On Solid-State Nanochannels. ACS Applied Materials & Driven Rever	4.0	49
9	Amine-Phosphate Specific Interactions within Nanochannels: Binding Behavior and Nanoconfinement Effects. Journal of Physical Chemistry C, 2019, 123, 28997-29007.	1.5	39
10	Dangerous liaisons: anion-induced protonation in phosphate–polyamine interactions and their implications for the charge states of biologically relevant surfaces. Physical Chemistry Chemical Physics, 2017, 19, 8612-8620.	1.3	31