
Syed Imran Hussain Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightweight and Low-Cost Deployable Origami Antennas—A Review. IEEE Access, 2021, 9, 86429-86448.	4.2	14
2	A Compact Triple-Band Antenna With a Broadside Radiation Characteristic for Head-Implantable Wireless Communications. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 958-962.	4.0	27
3	Recent Advancements in Quasi-Isotropic Antennas: A Review. IEEE Access, 2021, 9, 146296-146317.	4.2	5
4	Twoâ€Dimensional Electromechanically Transformable Metasurface with Beam Scanning Capability Using Four Independently Controllable Shape Memory Alloy Axes. Advanced Optical Materials, 2020, 8, 2001180.	7.3	12
5	Beamâ€Steering Metasurface: Twoâ€Dimensional Electromechanically Transformable Metasurface with Beam Scanning Capability Using Four Independently Controllable Shape Memory Alloy Axes (Advanced) Tj ETQq1	170378431	4⊥rgBT /Ove
6	Design and Verification of an Electrically Small, Extremely Thin Dual-Band Quasi-Isotropic Antenna. IEEE Antennas and Wireless Propagation Letters, 2020, 19, 2482-2486.	4.0	20
7	Electromechanically Deployable High-Gain Pop-Up Antenna Using Shape Memory Alloy and Kirigami Technology. IEEE Access, 2020, 8, 225210-225218.	4.2	11
8	Thermally Beam-Direction- and Beamwidth-Switchable Monopole Antenna Using Origami Reflectors With Smart Shape Memory Polymer Hinges. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1696-1700.	4.0	12
9	Frequency-Reconfigurable Antenna Inspired by Origami Flasher. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 1691-1695.	4.0	24
10	Bioinspired DNA Origami Quasi-Yagi Helical Antenna with Beam Direction and Beamwidth Switching Capability. Scientific Reports, 2019, 9, 14312.	3.3	11
11	A Novel Bio-Inspired Quasi-Yagi Helical Antenna with Beam Direction and Beamwidth Switching Capability using Origami DNA. , 2019, , .		1
12	A Deployable Quasi-Yagi Monopole Antenna Using Three Origami Magic Spiral Cubes. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 147-151.	4.0	28
13	Planar quasiâ€isotropic antenna for drone communication. Microwave and Optical Technology Letters, 2018, 60, 1290-1295.	1.4	8
14	Bistate Frequency Selective Surface based on Microfluidic Technology. , 2018, , .		2
15	A Novel DNA Inspired Mode and Frequency Reconfigurable Origami Helical Antenna. , 2018, , .		1
16	Microfluidically Frequency-Reconfigurable Quasi-Yagi Dipole Antenna. Sensors, 2018, 18, 2935.	3.8	12
17	Low-Cost Circularly Polarized Origami Antenna. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2026-2029.	4.0	34

18 Military field deployable antenna using origami. , 2017, , .

#	Article	IF	CITATIONS
19	A Novel High-Gain Tetrahedron Origami. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 848-851.	4.0	22
20	Frequency switchable origami magic cube antenna. , 2017, , .		1
21	Transformation from a Single Antenna to a Series Array Using Push/Pull Origami. Sensors, 2017, 17, 1968.	3.8	11
22	A Dual Band Frequency Reconfigurable Origami Magic Cube Antenna for Wireless Sensor Network Applications. Sensors, 2017, 17, 2675.	3.8	24
23	Fabrication of microstrip patch antenna using novel hybrid printing technology. Microwave and Optical Technology Letters, 2016, 58, 2602-2606.	1.4	3