
Aaron W James

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Blood Vessel Resident Human Stem Cells in Health and Disease. Stem Cells Translational Medicine, 2022, 11, 35-43.	3.3	14
2	PDGFRα reporter activity identifies periosteal progenitor cells critical for bone formation and fracture repair. Bone Research, 2022, 10, 7.	11.4	20
3	NELL-1 in Genome-Wide Association Studies across Human Diseases. American Journal of Pathology, 2022, 192, 395-405.	3.8	5
4	NGF-p75 signaling coordinates skeletal cell migration during bone repair. Science Advances, 2022, 8, eabl5716.	10.3	29
5	The WNT7A/WNT7B/GPR124/RECK signaling module plays an essential role in mammalian limb development. Development (Cambridge), 2022, 149, .	2.5	4
6	Neuron-to-vessel signaling is a required feature of aberrant stem cell commitment after soft tissue trauma. Bone Research, 2022, 10, .	11.4	12
7	Pharmacological inhibition of DKK1 promotes spine fusion in an ovariectomized rat model. Bone, 2022, 162, 116456.	2.9	0
8	NELL1 Regulates the Matrisome to Promote Osteosarcoma Progression. Cancer Research, 2022, 82, 2734-2747.	0.9	13
9	Clinicopathologic Analysis of Chondroblastoma in Adults: A Single-Institution Case Series. International Journal of Surgical Pathology, 2021, 29, 120-128.	0.8	7
10	Assessing the Bone-Forming Potential of Pericytes. Methods in Molecular Biology, 2021, 2235, 127-137.	0.9	3
11	Divergent effects of distinct perivascular cell subsets for intraâ€articular cell therapy in posttraumatic osteoarthritis. Journal of Orthopaedic Research, 2021, 39, 2388-2397.	2.3	7
12	Development of a Biomaterial Scaffold Integrated with Osteoinductive Oxysterol Liposomes to Enhance Hedgehog Signaling and Bone Repair. Molecular Pharmaceutics, 2021, 18, 1677-1689.	4.6	19
13	NGF-TrkA signaling dictates neural ingrowth and aberrant osteochondral differentiation after soft tissue trauma. Nature Communications, 2021, 12, 4939.	12.8	36
14	Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Translational Medicine, 2021, 10, 610-622.	3.3	17
15	Administration of TGF-ß Inhibitor Mitigates Radiation-induced Fibrosis in a Mouse Model. Clinical Orthopaedics and Related Research, 2021, 479, 468-474.	1.5	5
16	Spatial transcriptomics reveals a role for sensory nerves in preserving cranial suture patency through modulation of BMP/TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
17	Boneâ€ f orming perivascular cells: Cellular heterogeneity and use for tissue repair. Stem Cells, 2021, 39, 1427-1434.	3.2	9
18	CD10 expression identifies a subset of human perivascular progenitor cells with high proliferation and calcification potentials. Stem Cells, 2020, 38, 261-275.	3.2	29

#	Article	IF	CITATIONS
19	PDGFRα marks distinct perivascular populations with different osteogenic potential within adipose tissue. Stem Cells, 2020, 38, 276-290.	3.2	30
20	Tendon and Ligament Healing and Current Approaches to Tendon and Ligament Regeneration. Journal of Orthopaedic Research, 2020, 38, 7-12.	2.3	108
21	A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone. Cell Reports, 2020, 31, 107696.	6.4	42
22	Human perivascular stem cells prevent bone graft resorption in osteoporotic contexts by inhibiting osteoclast formation. Stem Cells Translational Medicine, 2020, 9, 1617-1630.	3.3	19
23	Functional Heterogeneity of Perivascular Precursor Cells. Current Tissue Microenvironment Reports, 2020, 1, 183-186.	3.2	0
24	Comparison of skeletal and soft tissue pericytes identifies CXCR4+ bone forming mural cells in human tissues. Bone Research, 2020, 8, 22.	11.4	25
25	Anti-DKK1 Enhances the Early Osteogenic Differentiation of Human Adipose-Derived Stem/Stromal Cells. Stem Cells and Development, 2020, 29, 1007-1015.	2.1	11
26	Perivascular Fibro-Adipogenic Progenitor Tracing during Post-Traumatic Osteoarthritis. American Journal of Pathology, 2020, 190, 1909-1920.	3.8	17
27	Five Decades Later, Are Mesenchymal Stem Cells Still Relevant?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 148.	4.1	109
28	Plateletâ€derived growth factor receptorâ€Î² (PDGFRβ) lineage tracing highlights perivascular cell to myofibroblast transdifferentiation during postâ€traumatic osteoarthritis. Journal of Orthopaedic Research, 2020, 38, 2484-2494.	2.3	9
29	Regulation of heterotopic ossification byÂmonocytes in a mouse model of aberrant wound healing. Nature Communications, 2020, 11, 722.	12.8	104
30	Endogenous CCN family member WISP1 inhibits trauma-induced heterotopic ossification. JCI Insight, 2020, 5, .	5.0	12
31	Immobilization after injury alters extracellular matrix and stem cell fate. Journal of Clinical Investigation, 2020, 130, 5444-5460.	8.2	42
32	Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. ELife, 2020, 9, .	6.0	14
33	Differential Vascularity in Genetic and Nonhereditary Heterotopic Ossification. International Journal of Surgical Pathology, 2019, 27, 859-867.	0.8	8
34	Comparison of Human Tissue Microarray to Human Pericyte Transcriptome Yields Novel Perivascular Cell Markers. Stem Cells and Development, 2019, 28, 1214-1223.	2.1	8
35	Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering. Npj Regenerative Medicine, 2019, 4, 1.	5.2	62
36	Heterotopic Ossification: A Comprehensive Review. JBMR Plus, 2019, 3, e10172.	2.7	277

#	Article	IF	CITATIONS
37	Pericytes in Sarcomas and Other Mesenchymal Tumors. Advances in Experimental Medicine and Biology, 2019, 1147, 109-124.	1.6	11
38	Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Engineering - Part A, 2019, 25, 1658-1666.	3.1	6
39	Age dependent effects of NELL-1 isoforms on bone marrow stromal cells. Journal of Orthopaedics, 2019, 16, 175-178.	1.3	2
40	Perivascular Mesenchymal Progenitors for Bone Regeneration. Journal of Orthopaedic Research, 2019, 37, 1221-1228.	2.3	30
41	Overlapping features of rapidly progressive osteoarthrosis and Charcot arthropathy. Journal of Orthopaedics, 2019, 16, 260-264.	1.3	4
42	Mesenchymal VEGFA induces aberrant differentiation in heterotopic ossification. Bone Research, 2019, 7, 36.	11.4	37
43	Chondromyxoid Fibroma of the Pelvis: Institutional Case Series With a Focus on Distinctive Features. International Journal of Surgical Pathology, 2019, 27, 352-359.	0.8	5
44	Fracture repair requires TrkA signaling by skeletal sensory nerves. Journal of Clinical Investigation, 2019, 129, 5137-5150.	8.2	122
45	Human perivascular stem cell-derived extracellular vesicles mediate bone repair. ELife, 2019, 8, .	6.0	65
46	Bizarre parosteal osteochondromatous proliferation: 16 Cases with a focus on histologic variability. Journal of Orthopaedics, 2018, 15, 138-142.	1.3	12
47	Effects of WNT3A and WNT16 on the Osteogenic and Adipogenic Differentiation of Perivascular Stem/Stromal Cells. Tissue Engineering - Part A, 2018, 24, 68-80.	3.1	20
48	Early Immunomodulatory Effects of Implanted Human Perivascular Stromal Cells During Bone Formation. Tissue Engineering - Part A, 2018, 24, 448-457.	3.1	22
49	Bullough's bump: unusual protuberant fibro-osseous tumor of the temporal bone. Case report. Journal of Neurosurgery: Pediatrics, 2018, 21, 107-111.	1.3	11
50	WISP-1 drives bone formation at the expense of fat formation in human perivascular stem cells. Scientific Reports, 2018, 8, 15618.	3.3	16
51	Pericytes for Therapeutic Bone Repair. Advances in Experimental Medicine and Biology, 2018, 1109, 21-32.	1.6	12
52	Frontal Bone Healing Is Sensitive to Wnt Signaling Inhibition via Lentiviral-Encoded Beta-Catenin Short Hairpin RNA. Tissue Engineering - Part A, 2018, 24, 1742-1752.	3.1	4
53	Lineage-Specific Wnt Reporter Elucidates Mesenchymal Wnt Signaling during Bone Repair. American Journal of Pathology, 2018, 188, 2155-2163.	3.8	3
54	WNT16 induces proliferation and osteogenic differentiation of human perivascular stem cells. Journal of Orthopaedics, 2018, 15, 854-857.	1.3	5

 ${\sf Aaron} \ {\sf W} \ {\sf James}$

#	Article	IF	CITATIONS
55	Ang-1 and Ang-2 expression in angiomyolipoma and PEComa family tumors. Journal of Orthopaedics, 2017, 14, 154-160.	1.3	2
56	Real-Time Three-Dimensional Echocardiography: Characterization of Cardiac Anatomy and Function—Current Clinical Applications and Literature Review Update. BioResearch Open Access, 2017, 6, 15-18.	2.6	11
57	BMP-2-induced bone formation and neural inflammation. Journal of Orthopaedics, 2017, 14, 252-256.	1.3	51
58	Combining Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing. Plastic and Reconstructive Surgery, 2017, 139, 1385-1396.	1.4	22
59	Vascular patterning in human heterotopic ossification. Human Pathology, 2017, 63, 165-170.	2.0	28
60	Pericytic mimicry (extravascular migratory metastasis) in neoplasia—reply. Human Pathology, 2017, 63, 218.	2.0	0
61	Ang-2 but not Ang-1 expression in perivascular soft tissue tumors. Journal of Orthopaedics, 2017, 14, 147-153.	1.3	2
62	Fibromodulin reduces scar formation in adult cutaneous wounds by eliciting a fetal-like phenotype. Signal Transduction and Targeted Therapy, 2017, 2, .	17.1	37
63	Pericytes for the treatment of orthopedic conditions. , 2017, 171, 93-103.		29
64	NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCl Insight, 2017, 2, .	5.0	18
65	lsolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS ONE, 2017, 12, e0177308.	2.5	23
66	Vertebral Implantation of NELL-1 Enhances Bone Formation in an Osteoporotic Sheep Model. Tissue Engineering - Part A, 2016, 22, 840-849.	3.1	20
67	Analysis of Bone-Cartilage-Stromal Progenitor Populations in Trauma Induced and Genetic Models of Heterotopic Ossification. Stem Cells, 2016, 34, 1692-1701.	3.2	27
68	Cyclophilin A (CypA) Plays Dual Roles in Regulation of Bone Anabolism and Resorption. Scientific Reports, 2016, 6, 22378.	3.3	13
69	Pericytic mimicry in well-differentiated liposarcoma/atypical lipomatous tumor. Human Pathology, 2016, 54, 92-99.	2.0	11
70	Malignant Peripheral Nerve Sheath Tumor. Surgical Oncology Clinics of North America, 2016, 25, 789-802.	1.5	109
71	Calvarial Defect Healing Induced by Small Molecule Smoothened Agonist. Tissue Engineering - Part A, 2016, 22, 1357-1366.	3.1	23
72	Sclerostin expression in skeletal sarcomas. Human Pathology, 2016, 58, 24-34.	2.0	7

#	Article	IF	CITATIONS
73	Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2. American Journal of Pathology, 2016, 186, 419-434.	3.8	59
74	A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering - Part B: Reviews, 2016, 22, 284-297.	4.8	741
75	The pericyte antigen RGS5 in perivascular soft tissue tumors. Human Pathology, 2016, 47, 121-131.	2.0	22
76	Variation in Osteogenic Differentiation Capacities of Adiposederived Stromal Cells by Anatomic Depot. International Journal of Orthopaedics (Hong Kong), 2016, 3, 549-556.	0.1	2
77	Effective molecular targeting of CDK4/6 and IGF-1R in a rare <i>FUS-ERG</i> fusion <i>CDKN2A</i> -deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model. Oncotarget, 2016, 7, 47556-47564.	1.8	91
78	NELL-1 expression in tumors of cartilage. Journal of Orthopaedics, 2015, 12, S223-S229.	1.3	7
79	Brief Report: Human Perivascular Stem Cells andNel-Like Protein-1 Synergistically Enhance Spinal Fusion in Osteoporotic Rats. Stem Cells, 2015, 33, 3158-3163.	3.2	44
80	Stem cell technology for bone regeneration: current status and potential applications. Stem Cells and Cloning: Advances and Applications, 2015, 8, 39.	2.3	53
81	An unusual karyotype in leiomyoma: Case report and literature review. Journal of Orthopaedics, 2015, 12, S251-S254.	1.3	2
82	Coincident liposarcoma, carcinoid and gastrointestinal stromal tumor complicating type 1 neurofibromatosis: Case report and literature review. Journal of Orthopaedics, 2015, 12, S111-S116.	1.3	12
83	Pericyte Antigens in Perivascular Soft Tissue Tumors. International Journal of Surgical Pathology, 2015, 23, 638-648.	0.8	26
84	Heterotopic Ossification: Basic-Science Principles and Clinical Correlates. Journal of Bone and Joint Surgery - Series A, 2015, 97, 1101-1111.	3.0	280
85	An unusual complex karyotype in myopericytoma. Journal of Orthopaedics, 2015, 12, 58-62.	1.3	2
86	NELL-1 expression in benign and malignant bone tumors. Biochemical and Biophysical Research Communications, 2015, 460, 368-374.	2.1	11
87	Pericyte antigens in angiomyolipoma and PEComa family tumors. Medical Oncology, 2015, 32, 210.	2.5	7
88	NELL-1 in the treatment of osteoporotic bone loss. Nature Communications, 2015, 6, 7362.	12.8	93
89	Diagnostically Challenging Epithelioid Soft Tissue Tumors. Surgical Pathology Clinics, 2015, 8, 309-329.	1.7	10
90	Abnormal karyotypes in osteochondroma: Case series and literature review. Journal of Orthopaedics, 2015, 12, 70-74.	1.3	1

#	Article	IF	CITATIONS
91	Bone Tissue Engineering and Regeneration. BioMed Research International, 2014, 2014, 1-2.	1.9	2
92	Human Perivascular Stem Cell-Based Bone Graft Substitute Induces Rat Spinal Fusion. Stem Cells Translational Medicine, 2014, 3, 1231-1241.	3.3	54
93	Current Trends in Bone Tissue Engineering. BioMed Research International, 2014, 2014, 1-5.	1.9	44
94	From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering. International Orthopaedics, 2014, 38, 1819-1824.	1.9	24
95	Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences, 2014, 71, 1353-1374.	5.4	231
96	High Resolution X-Ray: A Reliable Approach for Quantifying Osteoporosis in a Rodent Model. BioResearch Open Access, 2014, 3, 192-196.	2.6	4
97	Clavicular and meningeal alveolar soft part sarcoma: An unusual case and literature review. Journal of Orthopaedics, 2014, 11, 48-53.	1.3	4
98	Lentiviral Delivery of PPARÎ ³ shRNA Alters the Balance of Osteogenesis and Adipogenesis, Improving Bone Microarchitecture. Tissue Engineering - Part A, 2014, 20, 2699-2710.	3.1	14
99	Cytogenetics of melanoma: a review. Journal of the Association of Genetic Technologists, 2014, 40, 209-18.	0.1	1
100	NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product. Journal of Orthopaedic Science, 2013, 18, 646-657.	1.1	32
101	Human Perivascular Stem Cells Show Enhanced Osteogenesis and Vasculogenesis with Nel-Like Molecule I Protein. Tissue Engineering - Part A, 2013, 19, 1386-1397.	3.1	77
102	BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1. Tissue Engineering - Part A, 2013, 19, 2390-2401.	3.1	64
103	A review of hedgehog signaling in cranial bone development. Frontiers in Physiology, 2013, 4, 61.	2.8	94
104	Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica, 2013, 2013, 1-17.	1.7	374
105	NELL-1 Injection Maintains Long-Bone Quantity and Quality in an Ovariectomy-Induced Osteoporotic Senile Rat Model. Tissue Engineering - Part A, 2013, 19, 426-436.	3.1	22
106	Calvarial Cleidocraniodysplasia-Like Defects With ENU-Induced Nell-1 Deficiency. Journal of Craniofacial Surgery, 2012, 23, 61-66.	0.7	26
107	Brief Review of Models of Ectopic Bone Formation. Stem Cells and Development, 2012, 21, 655-667.	2.1	168
108	An Abundant Perivascular Source of Stem Cells for Bone Tissue Engineering. Stem Cells Translational Medicine, 2012, 1, 673-684.	3.3	112

#	Article	IF	CITATIONS
109	Use of Human Perivascular Stem Cells for Bone Regeneration. Journal of Visualized Experiments, 2012, , e2952.	0.3	29
110	NELLâ€1 promotes cell adhesion and differentiation via integrinβ1. Journal of Cellular Biochemistry, 2012, 113, 3620-3628.	2.6	43
111	Additive Effects of Sonic Hedgehog and Nell-1 Signaling in Osteogenic Versus Adipogenic Differentiation of Human Adipose-Derived Stromal Cells. Stem Cells and Development, 2012, 21, 2170-2178.	2.1	73
112	NELL-1 Promotes Cartilage Regeneration in an <i>In Vivo</i> Rabbit Model. Tissue Engineering - Part A, 2012, 18, 252-261.	3.1	43
113	Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering. Stem Cells Translational Medicine, 2012, 1, 510-519.	3.3	147
114	NELL-1 increases pre-osteoblast mineralization using both phosphate transporter Pit1 and Pit2. Biochemical and Biophysical Research Communications, 2012, 422, 351-357.	2.1	36
115	NELL-1-dependent mineralisation of Saos-2 human osteosarcoma cells is mediated via c-Jun N-terminal kinase pathway activation. International Orthopaedics, 2012, 36, 2181-2187.	1.9	20
116	The Nell-1 Growth Factor Stimulates Bone Formation by Purified Human Perivascular Cells. Tissue Engineering - Part A, 2011, 17, 2497-2509.	3.1	54
117	A new function of Nell-1 protein in repressing adipogenic differentiation. Biochemical and Biophysical Research Communications, 2011, 411, 126-131.	2.1	53
118	Acute Skeletal Injury Is Necessary for Human Adipose-Derived Stromal Cell–Mediated Calvarial Regeneration. Plastic and Reconstructive Surgery, 2011, 127, 1118-1129.	1.4	38
119	Differences in Osteogenic Differentiation of Adipose-Derived Stromal Cells from Murine, Canine, and Human Sources In Vitro and In Vivo. Plastic and Reconstructive Surgery, 2011, 128, 373-386.	1.4	50
120	CD105 Protein Depletion Enhances Human Adipose-derived Stromal Cell Osteogenesis through Reduction of Transforming Growth Factor β1 (TGF-β1) Signaling. Journal of Biological Chemistry, 2011, 286, 39497-39509.	3.4	144
121	Dura Mater Stimulates Human Adipose-Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects. Stem Cells, 2011, 29, 1241-1255.	3.2	92
122	Deleterious Effects of Freezing on Osteogenic Differentiation of Human Adipose-Derived Stromal Cells In Vitro and In Vivo. Stem Cells and Development, 2011, 20, 427-439.	2.1	55
123	Paracrine Interaction between Adipose-Derived Stromal Cells and Cranial Suture–Derived Mesenchymal Cells. Plastic and Reconstructive Surgery, 2010, 126, 806-821.	1.4	17
124	Retinoic Acid Enhances Osteogenesis in Cranial Suture–Derived Mesenchymal Cells: Potential Mechanisms of Retinoid-Induced Craniosynostosis. Plastic and Reconstructive Surgery, 2010, 125, 1352-1361.	1.4	37
125	Pulsed Direct Current Electric Fields Enhance Osteogenesis in Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2010, 16, 917-931.	3.1	61
126	Sonic Hedgehog Influences the Balance of Osteogenesis and Adipogenesis in Mouse Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2010, 16, 2605-2616.	3.1	132

#	Article	IF	CITATIONS
127	Regulation of Human Adipose-Derived Stromal Cell Osteogenic Differentiation by Insulin-Like Growth Factor-1 and Platelet-Derived Growth Factor-1±. Plastic and Reconstructive Surgery, 2010, 126, 41-52.	1.4	95
128	Human Adipose Derived Stromal Cells Heal Critical Size Mouse Calvarial Defects. PLoS ONE, 2010, 5, e11177.	2.5	255
129	Portomesenteric Venous Thrombosis After Laparoscopic Surgery. Archives of Surgery, 2009, 144, 520.	2.2	131
130	Differential Effects of TGF-β1 and TGF-β3 on Chondrogenesis in Posterofrontal Cranial Suture–Derived Mesenchymal Cells In Vitro. Plastic and Reconstructive Surgery, 2009, 123, 31-43.	1.4	67
131	Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion. PLoS ONE, 2009, 4, e7120.	2.5	54
132	Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development (Cambridge), 2008, 135, 2845-2854.	2.5	279
133	Proliferation, Osteogenic Differentiation, and FGF-2 Modulation of Posterofrontal/Sagittal Suture–Derived Mesenchymal Cells In Vitro. Plastic and Reconstructive Surgery, 2008, 122, 53-63.	1.4	49
134	DOOR syndrome: Clinical report, literature review and discussion of natural history. American Journal of Medical Genetics, Part A, 2007, 143A, 2821-2831.	1.2	40
135	Acetabular Reaming Is a Reliable Model to Produce and Characterize Periarticular Heterotopic Ossification of the Hip. Stem Cells Translational Medicine, 0, , .	3.3	4