Karel Å~ezáÄ•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354322/publications.pdf

Version: 2024-02-01

430874 552781 63 829 18 26 citations g-index h-index papers 63 63 63 370 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temporal behavior of hard x-ray and neutron production in plasma focus discharges. Physics of Plasmas, 2022, 29, .	1.9	4
2	Optimizing of Experimental Load of PFZ-200 Plasma Focus. IEEE Transactions on Plasma Science, 2021, 49, 450-454.	1.3	3
3	Mapping of azimuthal B-fields in Z-pinch plasmas using Z-pinch-driven ion deflectometry. Physics of Plasmas, 2021, 28, .	1.9	4
4	K-shell radiation and neutron emission from z-pinch plasmas generated by hybrid gas-puff implosions onto on-axis wires. Physics of Plasmas, 2021, 28, 062708.	1.9	3
5	Characteristics of fast deuteron sources generated in a dense plasma focus. European Physical Journal Plus, 2021, 136, 1.	2.6	5
6	Features of Neutron Emission in Experiments with Deuterium Hybrid Gas-Puff. , 2021, , .		0
7	Scenario of a magnetic dynamo and magnetic reconnection in a plasma focus discharge. Matter and Radiation at Extremes, 2020, 5, 046401.	3.9	5
8	Characteristics of closed currents and magnetic fields outside the dense pinch column in a plasma focus discharge. Physics of Plasmas, 2020, 27, .	1.9	6
9	lon acceleration and neutron production in hybrid gas-puff z-pinches on the GIT-12 and HAWK generators. Matter and Radiation at Extremes, 2020, 5, .	3.9	18
10	Neutron fluence distribution in experiments with 3 MA deuterium gas-puff z-pinch. Physics of Plasmas, 2020, 27, 072705.	1.9	3
11	Spatial distribution of ion emission in gas-puff z-pinches and dense plasma foci. Plasma Physics and Controlled Fusion, 2020, 62, 035009.	2.1	6
12	Production of energetic protons, deuterons, and neutrons up to 60 MeV via disruption of a current-carrying plasma column at 3 MA. New Journal of Physics, 2020, 22, 103036.	2.9	3
13	Laser-Target Experiments at PALS for Deuterium Plasma Beam Fusion. Acta Physica Polonica A, 2020, 138, 579-585.	0.5	2
14	Features of fast deuterons emitted from plasma focus discharges. Physics of Plasmas, 2019, 26, 032702.	1.9	14
15	Initial conditions in the hawk dense plasma focus. , 2019, , .		0
16	Evolution of a Pinch Column During the Acceleration of Fast Electrons and Deuterons in a Plasma-Focus Discharge. IEEE Transactions on Plasma Science, 2019, 47, 339-345.	1.3	15
17	Acceleration of protons and deuterons up to 35 MeV and generation of 10 ¹³ neutrons in a megaampere deuterium gas-puff z-pinch. Plasma Physics and Controlled Fusion, 2019, 61, 014018.	2.1	12
18	Evolution of the Pinched Column During Hard X-ray and Neutron Emission in a Dense Plasma Focus. Journal of Fusion Energy, 2019, 38, 490-498.	1.2	7

#	Article	IF	CITATIONS
19	Characterization of fast deuterons involved in the production of fusion neutrons in a dense plasma focus. Physics of Plasmas, 2018, 25, .	1.9	9
20	Production of relativistic electrons, MeV deuterons and protons by sub-nanosecond terawatt laser. Physics of Plasmas, 2018, 25, .	1.9	12
21	Investigation of Magnetic Fields in Z-Pinches via Multi-MeV Proton Deflectometry. IEEE Transactions on Plasma Science, 2018, 46, 3891-3900.	1.3	8
22	Ion acceleration mechanism in mega-ampere gas-puff z-pinches. New Journal of Physics, 2018, 20, 053064.	2.9	31
23	Initial Results from a Dense Plasma Focus Driven by a High-Inductance Generator. , 2018, , .		0
24	Measurements of Early-Time Plasma Evolution in the Hawk Dense Plasma Focus., 2018,,.		0
25	Target current: a useful parameter for characterizing laser ablation. Laser and Particle Beams, 2017, 35, 170-176.	1.0	6
26	Filamentation in the pinched column of the dense plasma focus. Physics of Plasmas, 2017, 24, 032706.	1.9	17
27	Increase in the neutron yield from a dense plasma-focus experiment performed with a conical tip placed in the centre of the anode end. Physics of Plasmas, 2017, 24, .	1.9	15
28	Transformation of the ordered internal structures during the acceleration of fast charged particles in a dense plasma focus. Physics of Plasmas, 2017, 24, 072706.	1.9	7
29	Neutron Spectrum Measured by Activation Diagnostics in Deuterium Gas-Puff Experiments on the 3 MA GIT-12 Z-Pinch. IEEE Transactions on Plasma Science, 2017, 45, 3209-3217.	1.3	6
30	Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications. Physics of Plasmas, 2016, 23, .	1.9	15
31	The influence of the nitrogen admixture on the evolution of a deuterium pinch column. Physics of Plasmas, 2016, 23, 082704.	1.9	12
32	MCNP calculations of neutron emission anisotropy caused by the GIT-12 hardware. Nukleonika, 2015, 60, 323-326.	0.8	2
33	Existence of a return direction for plasma escaping from a pinched column in a plasma focus discharge. Physics of Plasmas, 2015, 22, 052706.	1.9	16
34	Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch. Plasma Physics and Controlled Fusion, 2015, 57, 044005.	2.1	25
35	Temporal distribution of linear densities of the plasma column in a plasma focus discharge. Nukleonika, 2015, 60, 315-318.	0.8	1
36	Influence of an external magnetic field on the dynamics of a modified plasma focus. Physica Scripta, 2014, T161, 014042.	2.5	1

#	Article	IF	CITATIONS
37	Filamentary structure of plasma produced by compression of puffing deuterium by deuterium or neon plasma sheath on plasma-focus discharge. Physics of Plasmas, 2014, 21, 122706.	1.9	27
38	Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS. Review of Scientific Instruments, 2014, 85, 103507.	1.3	41
39	Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> -Pinch. Physical Review Letters, 2014, 112, 095001.	7.8	31
40	Search for Drive Parameter of Neutron-Optimized Z-Pinches and Dense Plasma Foci. IEEE Transactions on Plasma Science, 2013, 41, 3129-3134.	1.3	7
41	Scenario of pinch evolution in a plasma focus discharge. Plasma Physics and Controlled Fusion, 2013, 55, 035011.	2.1	34
42	Characterization of neutron emission from mega-ampere deuterium gas puff Z-pinch at microsecond implosion times. Plasma Physics and Controlled Fusion, 2013, 55, 085012.	2.1	20
43	Improvement of time-of-flight methods for reconstruction of neutron energy spectra from D(d,n) ³ He fusion reactions. Plasma Physics and Controlled Fusion, 2012, 54, 105011.	2.1	42
44	Search for thermonuclear neutrons in a mega-ampere plasma focus. Plasma Physics and Controlled Fusion, 2012, 54, 015001.	2.1	22
45	Response to "Comment on â€~Experimental evidence of thermonuclear neutrons in a modified plasma focus'―[Appl. Phys. Lett. 100, 016101 (2012)]. Applied Physics Letters, 2012, 100, 016102.	3.3	4
46	Energy Transformations in Column of Plasma-Focus Discharges With Megaampere Currents. IEEE Transactions on Plasma Science, 2012, 40, 481-486.	1.3	8
47	Deuterium gas puff Z-pinch at currents of 2 to 3 mega-ampere. Physics of Plasmas, 2012, 19, 032706.	1.9	23
48	Neutron Production From a Small Modified Plasma Focus Device. IEEE Transactions on Plasma Science, 2012, 40, 3298-3302.	1.3	2
49	Characterization of the Neutron Production in the Modified MA Plasma Focus. IEEE Transactions on Plasma Science, 2012, 40, 1075-1081.	1.3	9
50	Spontaneous Transformation in the Pinched Column of the Plasma Focus. IEEE Transactions on Plasma Science, 2011, 39, 562-568.	1.3	27
51	Fusion neutron detector for time-of-flight measurements in z-pinch and plasma focus experiments. Review of Scientific Instruments, 2011, 82, 033505.	1.3	29
52	Experimental evidence of thermonuclear neutrons in a modified plasma focus. Applied Physics Letters, 2011, 98, .	3.3	25
53	Interaction of Cu and plastic plasmas as a method of forming laser produced Cu plasma streams with a narrow jet or pipe geometry. Physics of Plasmas, 2011, 18, 044503.	1.9	7
54	Efficient production of 100 keV deuterons in deuterium gas puff Z-pinches at 2 MA current. Plasma Physics and Controlled Fusion, 2010, 52, 065013.	2.1	23

Karel Å ez Ãi Ä•

#	Article	lF	CITATION
55	Transformation of the Pinched Column at a Period of the Neutron Production. IEEE Transactions on Plasma Science, 2010, 38, 672-679.	1.3	27
56	Reconstruction of Time-Resolved Neutron Energy Spectra in Z-Pinch Experiments Using Time-of-flight Method. , 2009, , .		0
57	Determination of Deuteron Energy Distribution From Neutron Diagnostics in a Plasma-Focus Device. IEEE Transactions on Plasma Science, 2009, 37, 83-87.	1.3	24
58	Neutron Energy Distribution Function Reconstructed From Time-of-Flight Signals in Deuterium Gas-Puff \$Z\$-Pinch. IEEE Transactions on Plasma Science, 2009, 37, 425-432.	1.3	60
59	Neutron Production at the Small Plasma-Focus Device With Antianode. IEEE Transactions on Plasma Science, 2009, 37, 1786-1791.	1.3	6
60	Deuteron Acceleration and Fusion Neutron Production in Z-pinch plasmas., 2009,,.		0
61	Neutron emission generated during wire array Z-pinch implosion onto deuterated fiber. Physics of Plasmas, 2008, 15, 032701.	1.9	23
62	Time delay of the hard X-ray and neutron emission at PF 1000 facility. European Physical Journal D, 2006, 56, B273-B279.	0.4	4
63	Monte Carlo simulations for reconstruction of neutron time-resolving energy distribution in D-D fusion reactions. European Physical Journal D, 2006, 56, B357-B363.	0.4	11