List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adhesion, mobility and aggregation of nanoclusters at surfaces: Ni and Ag on Si, HOPG and graphene. SN Applied Sciences, 2022, 4, 1.	1.5	2
2	Morphology and Optical Properties of Gas-Phase-Synthesized Plasmonic Nanoparticles: Cu and Cu/MgO. Materials, 2022, 15, 4429.	1.3	0
3	Loading with Biomolecules Modulates the Antioxidant Activity of Cerium-Doped Bioactive Glasses. ACS Biomaterials Science and Engineering, 2022, 8, 2890-2898.	2.6	9
4	Ultrafast Dynamics of Plasmon-Mediated Charge Transfer in Ag@CeO ₂ Studied by Free Electron Laser Time-Resolved X-ray Absorption Spectroscopy. Nano Letters, 2021, 21, 1729-1734.	4.5	16
5	Ag/MgO Nanoparticles via Gas Aggregation Nanocluster Source for Perovskite Solar Cell Engineering. Materials, 2021, 14, 5507.	1.3	4
6	ZnO Thin Films Growth Optimization for Piezoelectric Application. Sensors, 2021, 21, 6114.	2.1	7
7	Surface Reactivity of Ag-Modified Ceria to Hydrogen: A Combined Experimental and Theoretical Investigation. ACS Applied Materials & Interfaces, 2020, 12, 27682-27690.	4.0	6
8	Optical and electronic properties of silver nanoparticles embedded in cerium oxide. Journal of Chemical Physics, 2020, 152, 114704.	1.2	12
9	Ultrafast Formation of Small Polarons and the Optical Gap in CeO ₂ . Journal of Physical Chemistry Letters, 2020, 11, 5686-5691.	2.1	23
10	Highly efficient plasmon-mediated electron injection into cerium oxide from embedded silver nanoparticles. Nanoscale, 2019, 11, 10282-10291.	2.8	27
11	Physical Synthesis and Study of Ag@CaF 2 Core@Shell Nanoparticles: Morphology and Tuning of Optical Properties. Physica Status Solidi (B): Basic Research, 2019, 256, 1800507.	0.7	3
12	Ultrafast electron-lattice thermalization in copper and other noble metal nanoparticles. Journal of Physics Condensed Matter, 2019, 31, 084001.	0.7	18
13	Low pressure bottom-up synthesis of metal@oxide and oxide nanoparticles: control of structure and functional properties. Physica Scripta, 2018, 93, 033001.	1.2	7
14	Role of cerium oxide in bioactive glasses during catalytic dissociation of hydrogen peroxide. Physical Chemistry Chemical Physics, 2018, 20, 23507-23514.	1.3	6
15	Scanning tunneling microscopy and photoemission studies of self-organised Ag nanostructures on the N-modified Cu(001) surface. Surface Science, 2018, 677, 213-218.	0.8	2
16	Contraction, cation oxidation state and size effects in cerium oxide nanoparticles. Nanotechnology, 2017, 28, 495702.	1.3	12
17	Structure of active cerium sites within bioactive glasses. Journal of the American Ceramic Society, 2017, 100, 5086-5095.	1.9	16
18	Investigation of Ni@CoO core-shell nanoparticle films synthesized by sequential layer deposition. Applied Surface Science, 2017, 396, 1860-1865.	3.1	4

#	Article	IF	CITATIONS
19	Steering the magnetic properties of Ni/NiO/CoO core-shell nanoparticle films: The role of core-shell interface versus interparticle interactions. Physical Review Materials, 2017, 1, .	0.9	6
20	Reducible Oxides as Ultrathin Epitaxial Films. Springer Series in Materials Science, 2016, , 119-148.	0.4	1
21	Influence of defect distribution on the reducibility of CeO _{2â^'<i>x</i>} nanoparticles. Nanotechnology, 2016, 27, 425705.	1.3	16
22	Morphology, structural properties and reducibility of size-selected CeO _{2â^'} <i>_x</i> nanoparticle films. Beilstein Journal of Nanotechnology, 2015, 6, 60-67.	1.5	13
23	Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x. Beilstein Journal of Nanotechnology, 2015, 6, 404-413.	1.5	17
24	Evidence of Catalase Mimetic Activity in Ce ³⁺ /Ce ⁴⁺ Doped Bioactive Glasses. Journal of Physical Chemistry B, 2015, 119, 4009-4019.	1.2	119
25	Structure and Morphology of Silver Nanoparticles on the (111) Surface of Cerium Oxide. Journal of Physical Chemistry C, 2015, 119, 6024-6032.	1.5	29
26	Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition. Nanotechnology, 2015, 26, 405704.	1.3	22
27	A Brief Tutorial for the STEM-CELL Software. Microscopy and Microanalysis, 2014, 20, 2134-2135.	0.2	1
28	Controlled growth of Ni/NiO core–shell nanoparticles: Structure, morphology and tuning of magnetic properties. Applied Surface Science, 2014, 306, 2-6.	3.1	25
29	Controlled co-deposition of FePt nanoparticles embedded in MgO: a detailed investigation of structure and electronic and magnetic properties. Nanotechnology, 2013, 24, 495703.	1.3	14
30	Anisotropy-graded magnetic media obtained by ion irradiation of L10 FePt. Acta Materialia, 2013, 61, 4840-4847.	3.8	19
31	Surface X-ray diffraction analysis of Fe nanostructured films grown on c(2×2)-N/Cu(100). Surface Science, 2012, 606, 813-819.	0.8	3
32	Assembly and structure of Ni/NiO core–shell nanoparticles. Applied Surface Science, 2012, 260, 13-16.	3.1	15
33	Controlled AFM detachments and movement of nanoparticles: gold clusters on HOPG at different temperatures. Nanotechnology, 2012, 23, 245706.	1.3	11
34	Assembly and Fine Analysis of Ni/MgO Core/Shell Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 14044-14049.	1.5	17
35	Structure and stability of nickel/nickel oxide core–shell nanoparticles. Journal of Physics Condensed Matter, 2011, 23, 175003	0.7	35
36	Morphology and magnetic properties of size-selected Ni nanoparticle films. Journal of Applied Physics, 2010, 107.	1.1	31

#	Article	IF	CITATIONS
37	Growth and study of Ni nanoparticles films deposited on inert subtrates. Journal of Physics: Conference Series, 2008, 100, 072046.	0.3	1
38	Atom geometry of nanostructured Fe films grown on c(2×2)-N/Cu(100) surface: An investigation by X-ray absorption spectroscopy with multishell analysis. Surface Science, 2007, 601, 329-340.	0.8	14
39	Self-assembly of an aromatic thiolate on Cu(100): The local adsorption site. Surface Science, 2005, 598, 253-262.	0.8	15
40	Molecular orientation of 2-mercaptobenzoxazole adsorbed on Cu(100) surface. Surface Science, 2005, 578, 136-141.	0.8	13
41	Evidence for interdot coupling in an array of micrometric Fe dots. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1373-E1375.	1.0	0
42	NiO and MgO ultrathin films by polarization dependent XAS. Surface Science, 2004, 566-568, 84-88.	0.8	20
43	X-ray absorption study at the Mg and O K edges of ultrathin MgO epilayers on Ag(001). Physical Review B, 2004, 69, .	1.1	77
44	OK-edge x-ray absorption study of ultrathinNiOepilayers depositedin situonAg(001). Physical Review B, 2004, 70, .	1.1	28
45	Structure properties of nanostructured Fe films grown on c(2 × 2) N/Cu(1 0 0) self-organised surface. Applied Surface Science, 2003, 212-213, 85-91.	3.1	3
46	Growth of epitaxial Yb silicide on Si(100) studied by metastable atom deexcitation spectroscopy and photemission. Physical Review B, 2002, 65, .	1.1	6
47	VARIATIONS IN THE LIFETIME OF 3d HOLE STATES IN ULTRATHIN Fe FILMS GROWN ON Cu(100) DEDUCED FROM THE LMM AUGER SPECTRA OF Fe. Surface Review and Letters, 2002, 09, 709-716.	0.5	15
48	Electronic properties of CaF2 nanodimensional islands on Si(): An MDS and UPS study. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 474-479.	0.6	9
49	Surface electronic states of Yb silicide ultrathin films studied with He metastable deexcitation spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 109-115.	0.8	0
50	An extended X-ray absorption fine structure study of Mn ultrathin films grown on Cu(100). Surface Science, 2001, 471, 203-208.	0.8	13
51	Growth of Yb silicide on Si(100): structure and electronic properties as a function of annealing temperature. Surface Science, 2001, 482-485, 817-822.	0.8	2
52	EXAFS analysis of ultrathin Fe films grown on Ni(100). Surface Science, 2001, 487, 258-266.	0.8	4
53	Structural and magnetic properties of self-assembled nanoscale Fe islands on Cu(100). Journal of Electron Spectroscopy and Related Phenomena, 2001, 114-116, 251-256.	0.8	11
54	Interface magnetometry in a (Fe6Ã/Ni24Ã)10 multilayer. Applied Surface Science, 2001, 175-176, 281-287.	3.1	2

4

#	Article	IF	CITATIONS
55	Formation of CaF2nanostructures on Si(001). Nanotechnology, 2001, 12, 403-408.	1.3	29
56	Structural analysis of epitaxial Fe films on Ni(001). Applied Surface Science, 2000, 162-163, 198-207.	3.1	7
57	Magnetic profile of Ni/Fe/Ni trilayers. Journal of Magnetism and Magnetic Materials, 2000, 210, 349-356.	1.0	13
58	Growth of Fe ultrathin films on Ni(111): structure and electronic properties. Surface Science, 2000, 454-456, 692-696.	0.8	22
59	The structure of (â^š3×â^š3)R30° iodine on Pd (111) surface studied by normal incidence X-ray standing wavefield absorption. Chemical Physics Letters, 1999, 306, 341-344.	1.2	12
60	Surface extended X-ray absorption fine structure investigation of Fe islands grown on c(2×2) N/Cu(100) surface. Surface Science, 1999, 442, 74-80.	0.8	19
61	Charge transfer and redistribution in the formation of the K/GaP(110) interface: a photoelectron spectroscopy study. Journal of Physics Condensed Matter, 1998, 10, 2861-2871.	0.7	7
62	Removal of the clock reconstruction of Ni(100)-(2×2)p4g-N by coadsorption of K: A spot-profile-analysis low-energy-electron-diffraction and angle-resolved ultraviolet-photoemission-spectroscopy study. Physical Review B, 1997, 56, 7636-7642.	1.1	6
63	Core level analysis of the interface. Surface Science, 1997, 377-379, 233-237.	0.8	2
64	Surface phase transitions of Ge(111)c(2×8) studied by electron energy loss spectroscopy. Surface Science, 1997, 377-379, 534-538.	0.8	6
65	Structural and magnetic properties of Ni/γFe/Ni multilayers. Journal of Magnetism and Magnetic Materials, 1997, 165, 216-219.	1.0	9
66	Coverage-dependent azimuthal alignment of SO2 on Ag(110). Surface Science, 1996, 364, L519-L524.	0.8	20
67	A Cooper minimum photoemission study of the alloy. Journal of Physics Condensed Matter, 1996, 8, 1413-1419.	0.7	4
68	The localisation of 3d hole states in Fe and FeAl studied by Auger vacancy satellite spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 205-209.	0.8	24
69	Copper L3-M4,5M4,5 Auger and Auger satellite structures in polycrystalline Cu50Pd50 alloy. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 217-221.	0.8	2
70	An investigation of the unoccupied p-symmetry states in Ag- and Pd-containing systems via l → (l â^' 1) high resolution near-edge X-ray absorption spectroscopy. Physica B: Condensed Matter, 1995, 208-209, 278-280.	1.3	0
71	An X-ray absorption spectroscopy study of the interface. Solid State Communications, 1995, 93, 11-16.	0.9	3
72	Performance of the soft xâ€ray double crystal monochromator on beamline 4.2 at the SRS, Daresbury Laboratory. Review of Scientific Instruments, 1995, 66, 1762-1764.	0.6	32

#	Article	IF	CITATIONS
73	Charge-Transfer Satellites in K <i>L</i> ₂₃ XAS Data for K/Si(111)-(2 × 1): Evidence for Strong Ionic Bonds. Europhysics Letters, 1994, 26, 85-90.	0.7	11
74	l→(l-1) AgM4,5 XAS investigation at the Ag/Si(111)2 × 1 interface. Applied Surface Science, 1993, 70-71, 456-460.	3.1	2
75	An X-ray absorption fine structure study of Ge(001)(2×1)-S. Surface Science, 1993, 287-288, 317-320.	0.8	15
76	Strong evolution of thep-projected empty density of states in Pd-Al alloys: AnM4,5x-ray-absorption-spectroscopy investigation. Physical Review B, 1993, 47, 6937-6941.	1.1	5
77	Adsorbate-induced de-reconstruction in the interaction of H2S with Ge(001)2*1. Journal of Physics Condensed Matter, 1992, 4, 8441-8446.	0.7	14
78	P-derived valence states at the reactive GaP(110)/Yb interface via PL2,3VVAuger line-shape spectroscopy. Physical Review B, 1992, 45, 6255-6258.	1.1	3
79	Synchrotron-radiation investigation of the chemical dependence of the vacancy-satellite structure of the NiL3VVspectra in Ni silicides. Physical Review B, 1992, 46, 15652-15659.	1.1	5
80	Satellite Structures of the NickelL3VVAuger Spectrum in Nickel Silicides: A Synchrotron Radiation Investigation. Physica Scripta, 1992, T41, 269-272.	1.2	0
81	PL2, 3VVAuger Spectroscopy at the GaP(110)/Yb Interface: Analysis of the Chemical Bond. Physica Scripta, 1992, T41, 241-245.	1.2	Ο
82	Electron energy loss and Auger spectroscopy of the YbGaP(110) interface. Applied Surface Science, 1992, 56-58, 252-258.	3.1	3
83	Empty states of the Ni/Si(111)7 × 7 interface. Surface Science, 1991, 251-252, 258-261.	0.8	1
84	Experimental and theoretical study of the PL2.3W Auger lineshape of GaP(110). Surface Science, 1991, 251-252, 267-271.	0.8	11
85	EELS cross section calculations on Si(111)2 × 1. Surface Science, 1991, 251-252, 286-290.	0.8	1
86	Unoccupied 3d-derived states in Ni silicides via Ni L2.3 X-ray absorption spectroscopy. Solid State Communications, 1991, 78, 641-645.	0.9	3
87	Inelastic-electron-scattering investigation of clean and hydrogen-exposed InP(110) surfaces. Physical Review B, 1991, 43, 9818-9822.	1.1	7
88	HREELS investigation of clean and hydrogen-InP(110) surfaces. Vacuum, 1990, 41, 660-662.	1.6	7
89	BIS investigation of PdSi(111)7 × 7 interface formation. Vacuum, 1990, 41, 702-704.	1.6	1
90	Strong chemical reactivity at the early stages of Yb overgrowth on GaP(110): A synchrotron-radiation study. Physical Review B, 1990, 42, 3478-3484.	1.1	18

#	Article	IF	CITATIONS
91	Oxygen on Ni(111): A multiple-scattering analysis of the near-edge x-ray-absorption fine structure. Physical Review B, 1990, 41, 7462-7466.	1.1	48
92	Anisotropy of the electronic structures of the GaP(110) surface: A high-resolution electron-energy-loss spectroscopy study. Physical Review B, 1989, 39, 5975-5979.	1.1	14
93	Surface anisotropy of Ill–V compounds. Surface Science, 1989, 211-212, 524-533.	0.8	18
94	Calculation of surface phonon dispersion on Ni(100) and Ni(100)+c(2×2) along the (010) direction by means of the matching procedure. II. Journal of Physics C: Solid State Physics, 1988, 21, 2113-2136.	1.5	17
95	Dispersion effects and electron energy loss of silicon surface. Surface Science, 1985, 162, 175-183.	0.8	8