Thiago F Rangel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354056/publications.pdf

Version: 2024-02-01

57631 46693 8,747 115 44 89 citations h-index g-index papers 124 124 124 10637 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography, 2010, 33, 46-50.	2.1	1,025
2	Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 2006, 15, 321-327.	2.7	540
3	Hutchinson's duality: The once and future niche. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19651-19658.	3.3	534
4	Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography, 2009, 32, 897-906.	2.1	494
5	Mantel test in population genetics. Genetics and Molecular Biology, 2013, 36, 475-485.	0.6	346
6	Patterns and causes of species richness: a general simulation model for macroecology. Ecology Letters, 2009, 12, 873-886.	3.0	286
7	Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 165-174.	1.2	271
8	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	6.0	260
9	Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Diversity and Distributions, 2006, 12, 475-482.	1.9	245
10	Increased tolerance to humans among disturbed wildlife. Nature Communications, 2015, 6, 8877.	5.8	235
11	Coefficient shifts in geographical ecology: an empirical evaluation of spatial and nonâ€spatial regression. Ecography, 2009, 32, 193-204.	2.1	231
12	Model selection and information theory in geographical ecology. Global Ecology and Biogeography, 2008, 17, 479-488.	2.7	183
13	Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 2011, 14, 741-748.	3.0	183
14	Environmental drivers of betaâ€diversity patterns in Newâ€World birds and mammals. Ecography, 2009, 32, 226-236.	2.1	177
15	The Latitudinal Diversity Gradient: Novel Understanding through Mechanistic Eco-evolutionary Models. Trends in Ecology and Evolution, 2019, 34, 211-223.	4.2	151
16	Species Richness and Evolutionary Niche Dynamics: A Spatial Pattern–Oriented Simulation Experiment. American Naturalist, 2007, 170, 602-616.	1.0	147
17	Community phylogenetics at the biogeographical scale: cold tolerance, niche conservatism and the structure of <scp>N</scp> orth <scp>A</scp> merican forests. Journal of Biogeography, 2014, 41, 23-38.	1.4	126
18	Drawbacks to palaeodistribution modelling: the case of South American seasonally dry forests. Journal of Biogeography, 2013, 40, 345-358.	1.4	116

#	Article	IF	Citations
19	On the selection of phylogenetic eigenvectors for ecological analyses. Ecography, 2012, 35, 239-249.	2.1	107
20	Phylogenetic uncertainty revisited: Implications for ecological analyses. Evolution; International Journal of Organic Evolution, 2015, 69, 1301-1312.	1.1	98
21	Labeling Ecological Niche Models. Natureza A Conservacao, 2012, 10, 119-126.	2.5	96
22	A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a <scp>N</scp> eotropical seasonally dry forest tree species. Molecular Ecology, 2012, 21, 5845-5863.	2.0	94
23	Areas of climate stability of species ranges in the Brazilian Cerrado: disentangling uncertainties through time. Natureza A Conservacao, 2012, 10, 152-159.	2.5	93
24	Uncertainty associated with survey design in Species Distribution Models. Diversity and Distributions, 2014, 20, 1258-1269.	1.9	91
25	Spatial autocorrelation analysis allows disentangling the balance between neutral and niche processes in metacommunities. Oikos, 2012, 121, 201-210.	1.2	89
26	Mapping knowledge gaps in marine diversity reveals a latitudinal gradient of missing species richness. Nature Communications, 2018, 9, 4713.	5.8	86
27	Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Global Ecology and Biogeography, 2005, 14, 469-477.	2.7	79
28	A stochastic, evolutionary model for range shifts and richness on tropical elevational gradients under Quaternary glacial cycles. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3695-3707.	1.8	77
29	Lomborg and the Litany of Biodiversity Crisis: What the Peerâ€Reviewed Literature Says. Conservation Biology, 2005, 19, 1301-1305.	2.4	72
30	Conserving the Brazilian semiarid (Caatinga) biome under climate change. Biodiversity and Conservation, 2012, 21, 2913-2926.	1.2	70
31	EXPLORING PATTERNS OF INTERSPECIFIC VARIATION IN QUANTITATIVE TRAITS USING SEQUENTIAL PHYLOGENETIC EIGENVECTOR REGRESSIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 1079-1090.	1.1	70
32	Evaluating, partitioning, and mapping the spatial autocorrelation component in ecological niche modeling: a new approach based on environmentally equidistant records. Ecography, 2014, 37, 637-647.	2.1	64
33	Toward a Mechanistic Understanding of Linguistic Diversity. BioScience, 2013, 63, 524-535.	2.2	62
34	Assessment of assemblageâ€wide temporal niche segregation using null models. Methods in Ecology and Evolution, 2010, 1, 311-318.	2.2	61
35	Anuran species richness, complementarity and conservation conflicts in Brazilian Cerrado. Acta Oecologica, 2006, 29, 9-15.	0.5	59
36	Nonstationary effects of productivity, seasonality, and historical climate changes on global amphibian diversity. Ecography, 2013, 36, 104-113.	2.1	59

#	Article	IF	Citations
37	An evolutionary tolerance model explaining spatial patterns in species richness under environmental gradients and geometric constraints. Ecography, 2005, 28, 253-263.	2.1	58
38	gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity. PLoS Biology, 2021, 19, e3001340.	2.6	54
39	Neutral community dynamics, the mid-domain effect and spatial patterns in species richness. Ecology Letters, 2005, 8, 783-790.	3.0	53
40	Equilibrium of Global Amphibian Species Distributions with Climate. PLoS ONE, 2012, 7, e34420.	1.1	52
41	Phylogenetic fields of species: cross-species patterns of phylogenetic structure and geographical coexistence. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122570.	1.2	52
42	Null models and spatial patterns of species richness in South American birds of prey. Ecology Letters, 2002, 5, 47-55.	3.0	51
43	Ensemble forecasting shifts in climatically suitable areas for <i>Tropidacris cristata</i> (Orthoptera:) Tj ETQq1 1	0.784314	\cdot rg $_{51}^{BT}$ /Overlo
44	Richness patterns, species distributions and the principle of extreme deconstruction. Global Ecology and Biogeography, 2009, 18, 123-136.	2.7	49
45	A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genetics and Molecular Biology, 2012, 35, 673-679.	0.6	47
46	Non-stationarity, diversity gradients and the metabolic theory of ecology. Global Ecology and Biogeography, 2007, 16, 820-822.	2.7	45
47	Temporal degradation of data limits biodiversity research. Ecology and Evolution, 2017, 7, 6863-6870.	0.8	45
48	Macroevolutionary dynamics in environmental space and the latitudinal diversity gradient in New World birds. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 43-52.	1.2	43
49	Geographical patterns of phylogenetic betaâ€diversity components in terrestrial mammals. Global Ecology and Biogeography, 2017, 26, 573-583.	2.7	39
50	A parsimonious view of the parsimony principle in ecology and evolution. Ecography, 2019, 42, 968-976.	2.1	39
51	Climate change will decrease the range size of snake species under negligible protection in the Brazilian Atlantic Forest hotspot. Scientific Reports, 2019, 9, 8523.	1.6	38
52	A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography, 2019, 42, 1124-1141.	2.1	36
53	Testing the Water–Energy Theory on American Palms (Arecaceae) Using Geographically Weighted Regression. PLoS ONE, 2011, 6, e27027.	1.1	34
54	Human development and biodiversity conservation in Brazilian Cerrado. Applied Geography, 2007, 27, 14-27.	1.7	33

#	Article	IF	CITATIONS
55	Conservation biogeography of anurans in Brazilian Cerrado. Biodiversity and Conservation, 2007, 16, 997-1008.	1.2	33
56	A test of multiple hypotheses for the species richness gradient of South American owls. Oecologia, 2004, 140, 633-638.	0.9	32
57	Past Extinctions of Homo Species Coincided with Increased Vulnerability to Climatic Change. One Earth, 2020, 3, 480-490.	3.6	30
58	Eigenvector estimation of phylogenetic and functional diversity. Functional Ecology, 2011, 25, 735-744.	1.7	28
59	Global patterns of mammalian coâ€occurrence: phylogenetic and body size structure within species ranges. Journal of Biogeography, 2017, 44, 136-146.	1.4	27
60	High uncertainty in the effects of data characteristics on the performance of species distribution models. Ecological Indicators, 2021, 121, 107147.	2.6	26
61	Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Diversity and Distributions, 2008, 14, 78-86.	1.9	25
62	Conservation planning: a macroecological approach using the endemic terrestrial vertebrates of the Brazilian Cerrado. Oryx, 2008, 42, 567.	0.5	25
63	Fossil record improves biodiversity risk assessment under future climate change scenarios. Diversity and Distributions, 2017, 23, 922-933.	1.9	25
64	PALEO-PGEM v1.0: a statistical emulator of Pliocene–Pleistocene climate. Geoscientific Model Development, 2019, 12, 5137-5155.	1.3	25
65	Agriculture, habitat loss and spatial patterns of human occupation in a biodiversity hotspot. Scientia Agricola, 2009, 66, 764-771.	0.6	23
66	Spatial patterns in species richness and the geometric constraint simulation model: a global analysis of mid-domain effect in Falconiformes. Acta Oecologica, 2003, 24, 203-207.	0.5	22
67	Processâ€based modelling shows how climate and demography shape language diversity. Global Ecology and Biogeography, 2017, 26, 584-591.	2.7	22
68	Environmental factors explain the spatial mismatches between species richness and phylogenetic diversity of terrestrial mammals. Global Ecology and Biogeography, 2019, 28, 1855-1865.	2.7	21
69	Current climate, but also longâ€term climate changes and human impacts, determine the geographic distribution of European mammal diversity. Global Ecology and Biogeography, 2020, 29, 1758-1769.	2.7	21
70	Ancient Maya Agroforestry Echoing Through Spatial Relationships in the Extant Forest of NW Belize. Biotropica, 2011, 43, 141-148.	0.8	20
71	Using maps of biogeographical ignorance to reveal the uncertainty in distributional data hidden in species distribution models. Ecography, 2021, 44, 1743-1755.	2.1	20
72	Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America. Hydrobiologia, 2019, 836, 1-19.	1.0	19

#	Article	IF	Citations
73	Two sides of a coin: Effects of climate change on the native and non-native distribution of Colossoma macropomum in South America. PLoS ONE, 2017, 12, e0179684.	1.1	19
74	Sensitivity of macroecological patterns of South American parrots to differences in data sources. Global Ecology and Biogeography, 2004, 13, 193-198.	2.7	18
75	Drivers of geographical patterns of North American language diversity. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190242.	1.2	18
76	Effects of global climate changes on geographical distribution patterns of economically important plant species in cerrado. Revista Arvore, 2013, 37, 267-274.	0.5	17
77	Coupling environment and physiology to predict effects of climate change on the taxonomic and functional diversity of fish assemblages in the Murray-Darling Basin, Australia. PLoS ONE, 2019, 14, e0225128.	1.1	17
78	Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29, 26-37.	2.7	17
79	Spatial variation in direct and indirect effects of climate and productivity on species richness of terrestrial tetrapods. Global Ecology and Biogeography, 2021, 30, 1899-1908.	2.7	17
80	SUNPLIN: Simulation with Uncertainty for Phylogenetic Investigations. BMC Bioinformatics, 2013, 14, 324.	1.2	16
81	Biogeographical history constrains climatic niche diversification without adaptive forces driving evolution. Journal of Biogeography, 2019, 46, 1020-1028.	1.4	16
82	Ecological niche models predict the potential distribution of the exotic rotifer Kellicottia bostoniensis (Rousselet, 1908) across the globe. Hydrobiologia, 2021, 848, 299-309.	1.0	16
83	Drivers of academic performance in a Brazilian university under a government-restructuring program. Journal of Informetrics, 2016, 10, 151-161.	1.4	15
84	Mudanças Climáticas e a Biodiversidade dos Biomas Brasileiros: Passado, Presente e Futuro. Natureza A Conservacao, 2010, 08, 194-196.	2.5	15
85	Seeing the forest for the trees: partitioning ecological and phylogenetic components of Bergmann's rule in European Carnivora. Ecography, 2007, 30, 598-608.	2.1	14
86	Allometric and ontogenetic patterns related to feeding of a neotropical fish, Satanoperca pappaterra (Perciformes, Cichlidae). Ecology of Freshwater Fish, 2008, 17, 155-164.	0.7	14
87	A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History. IScience, 2020, 23, 101693.	1.9	14
88	Amazonian Extinction Debts. Science, 2012, 337, 162-163.	6.0	13
89	Stacked species distribution and macroecological models provide incongruent predictions of species richness for Drosophilidae in the Brazilian savanna. Insect Conservation and Diversity, 2017, 10, 415-424.	1.4	13
90	Linking species functional traits of terrestrial vertebrates and environmental filters: A case study in temperate mountain systems. PLoS ONE, 2019, 14, e0211760.	1.1	13

#	Article	IF	Citations
91	Neutral Community Dynamics and the Evolution of Species Interactions. American Naturalist, 2018, 191, 421-434.	1.0	12
92	Quantitative genetics of body size evolution on islands: an individual-based simulation approach. Biology Letters, 2019, 15, 20190481.	1.0	12
93	Mapping the observed and modelled intracontinental distribution of non-marine ostracods from South America. Hydrobiologia, 2020, 847, 1663-1687.	1.0	12
94	The conservation of migratory fishes in the second largest river basin of South America depends on the creation of new protected areas. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 2515-2532.	0.9	12
95	Distribution of megabenthic gastropods along environmental gradients: the mid-domain effect and beyond. Marine Ecology - Progress Series, 2008, 367, 193-202.	0.9	11
96	Conservation biogeography of mammals in the Cerrado biome under the unified theory of macroecology. Acta Oecologica, 2009, 35, 630-638.	0.5	10
97	Metaâ€analyzing the likely crossâ€species responses to climate change. Ecology and Evolution, 2019, 9, 11136-11144.	0.8	10
98	A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography, 2020, 29, 320-330.	2.7	10
99	Effects of neutrality and productivity on mammal richness and evolutionary history in Australia. Ecography, 2019, 42, 478-487.	2.1	9
100	Autoregressive modelling of species richness in the Brazilian Cerrado. Brazilian Journal of Biology, 2008, 68, 233-240.	0.4	8
101	Spatially explicit analyses highlight idiosyncrasies: species extinctions and the loss of evolutionary history. Diversity and Distributions, 2013, 19, 1543-1552.	1.9	8
102	Neutral biogeography of phylogenetically structured interaction networks. Ecography, 2017, 40, 1467-1474.	2.1	8
103	Exceptions to the rule: Relative roles of time, diversification rates and regional energy in shaping the inverse latitudinal diversity gradient. Global Ecology and Biogeography, 2022, 31, 1794-1809.	2.7	7
104	Latitudinal gradients in species richness for South American Mytilidae and Ostreidae: can alternative hypotheses be evaluated by a correlative approach?. Marine Biology, 2009, 156, 1917-1928.	0.7	6
105	A new eigenfunction spatial analysis describing population genetic structure. Genetica, 2013, 141, 479-489.	0.5	6
106	Genetic Population Structure and Allele Surfing During Range Expansion in Dynamic Habitats. Anais Da Academia Brasileira De Ciencias, 2019, 91, e20180179.	0.3	6
107	Quantitative genetics of extreme insular dwarfing: The case of red deer on Jersey. Journal of Biogeography, 2021, 48, 1720-1730.	1.4	6

 $\text{Geographic shifts in climatically suitable areas and loss of genetic variability in Dipteryx alata ($$\hat{e}$ eBaru$$\hat{e}$)$ Tj ETQq0000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$\hat{e}$)$ Tj ETQq0000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$\hat{e}$)$ Tj ETQq0000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$\hat{e}$)$ Tj ETQq0000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$$$\hat{e}$)$ Tj ETQq00000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$$$\hat{e}$)$ Tj ETQq00000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$$$$\hat{e}$)$ Tj ETQq00000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$$$\hat{e}$)$ Tj ETQq00000 rgBT_5 Overlock alata ($$\hat{e}$ eBaru$$$$$$$$$$$$$

108

#	Article	IF	CITATIONS
109	Extreme deconstruction supports niche conservatism driving New World bird diversity. Acta Oecologica, 2012, 43, 16-21.	0.5	4
110	Area, isolation and climate explain the diversity of mammals on islands worldwide. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211879.	1.2	4
111	How likely are adaptive responses to mitigate the threats of climate change for amphibians globally?. Frontiers of Biogeography, 2019, 11, .	0.8	3
112	A global analysis of the susceptibility of river basins to invasion of a freshwater zooplankton () Tj ETQq0 0 0 rgB	T /Overloc 1.2	k 19 Tf 50 622
113	Geographic shifts in climatically suitable areas and loss of genetic variability under climate change in a neotropical tree. BMC Proceedings, 2011, 5, .	1.8	O
114	workshop summary: The application of species distribution models in the megadiverse Neotropics poses a renewed set of research questions. Frontiers of Biogeography, 2012, 4, .	0.8	0
115	Biogeographical Models. , 2013, , 565-575.		O