Rosario Donato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3354030/publications.pdf

Version: 2024-02-01

60 papers

8,412 citations

36 h-index 59 g-index

60 all docs

60 docs citations

times ranked

60

9344 citing authors

#	Article	IF	CITATIONS
1	S100 proteins in obesity: liaisons dangereuses. Cellular and Molecular Life Sciences, 2020, 77, 129-147.	5.4	31
2	Targeting RAGE prevents muscle wasting and prolongs survival in cancer cachexia. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 929-946.	7.3	60
3	Reductive stress in striated muscle cells. Cellular and Molecular Life Sciences, 2020, 77, 3547-3565.	5.4	31
4	Parenchymal and nonâ€parenchymal immune cells in the brain: A critical role in regulating CNS functions. International Journal of Developmental Neuroscience, 2019, 77, 26-38.	1.6	14
5	Do porcine Sertoli cells represent an opportunity for Duchenne muscular dystrophy?. Cell Proliferation, 2019, 52, e12599.	5.3	11
6	Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 721-733.	4.1	1,050
7	Targeting mTOR in Glioblastoma: Rationale and Preclinical/Clinical Evidence. Disease Markers, 2018, 2018, 1-10.	1.3	81
8	Cellular and molecular mechanisms of sarcopenia: the S100B perspective. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1255-1268.	7.3	64
9	Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. Nanomaterials, 2018, 8, 867.	4.1	18
10	RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2018, 9, 1213-1234.	7.3	75
11	Targeting RAGE as a potential therapeutic approach to Duchenne muscular dystrophy. Human Molecular Genetics, 2018, 27, 3734-3746.	2.9	26
12	PP242 Counteracts Glioblastoma Cell Proliferation, Migration, Invasiveness and Stemness Properties by Inhibiting mTORC2/AKT. Frontiers in Cellular Neuroscience, 2018, 12, 99.	3.7	34
13	Microglia and Aging: The Role of the TREM2–DAP12 and CX3CL1-CX3CR1 Axes. International Journal of Molecular Sciences, 2018, 19, 318.	4.1	154
14	S100A6 protein: functional roles. Cellular and Molecular Life Sciences, 2017, 74, 2749-2760.	5.4	104
15	Levels of S100B protein drive the reparative process in acute muscle injury and muscular dystrophy. Scientific Reports, 2017, 7, 12537.	3.3	37
16	Oxidative stress-induced S100B accumulation converts myoblasts into brown adipocytes via an NF-κB/YY1/miR-133 axis and NF-κB/YY1/BMP-7 axis. Cell Death and Differentiation, 2017, 24, 2077-2088.	11.2	38
17	Employment of Microencapsulated Sertoli Cells as a New Tool to Treat Duchenne Muscular Dystrophy. Journal of Functional Morphology and Kinesiology, 2017, 2, 47.	2.4	3
18	The Pathophysiological Role of Microglia in Dynamic Surveillance, Phagocytosis and Structural Remodeling of the Developing CNS. Frontiers in Molecular Neuroscience, 2017, 10, 191.	2.9	188

#	Article	IF	CITATIONS
19	Microglia-glioma cross-talk a two way approach to new strategies against glioma. Frontiers in Bioscience - Landmark, 2017, 22, 268-309.	3.0	45
20	Intraperitoneal injection of microencapsulated Sertoli cells restores muscle morphology and performance in dystrophic mice. Biomaterials, 2016, 75, 313-326.	11.4	25
21	Effects of intraperitoneal injection of microencapsulated Sertoli cells on chronic and presymptomatic dystrophic mice. Data in Brief, 2015, 5, 1015-1021.	1.0	8
22	Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth <i>in vivo</i> ii) embryonal rhabdomyosarcoma cells. Carcinogenesis, 2015, 36, 1071-1083.	2.8	77
23	Defective RAGE activity in embryonal rhabdomyosarcoma cells results in high PAX7 levels that sustain migration and invasiveness. Carcinogenesis, 2014, 35, 2382-2392.	2.8	19
24	Phosphocaveolin-1 Enforces Tumor Growth and Chemoresistance in Rhabdomyosarcoma. PLoS ONE, 2014, 9, e84618.	2.5	17
25	S100B protein in tissue development, repair and regeneration. World Journal of Biological Chemistry, 2013, 4, 1.	4.3	84
26	S100 Calcium Binding Proteins and Ion Channels. Frontiers in Pharmacology, 2012, 3, 67.	3.5	64
27	S100B protein in myoblasts modulates myogenic differentiation via NFâ€Î°Bâ€dependent inhibition of MyoD expression. Journal of Cellular Physiology, 2010, 223, 270-282.	4.1	52
28	S100B Protein in the Nervous System and Cardiovascular Apparatus in Normal and Pathological Conditions. Cardiovascular Psychiatry and Neurology, 2010, 2010, 1-2.	0.8	30
29	S100B Protein, a Damage-Associated Molecular Pattern Protein in the Brain and Heart, and Beyond. Cardiovascular Psychiatry and Neurology, 2010, 2010, 1-13.	0.8	136
30	S100B/RAGE-dependent activation of microglia via NF-κB and AP-1. Neurobiology of Aging, 2010, 31, 665-677.	3.1	216
31	S100B Protein Regulates Astrocyte Shape and Migration via Interaction with Src Kinase. Journal of Biological Chemistry, 2009, 284, 8797-8811.	3.4	135
32	S100B's double life: Intracellular regulator and extracellular signal. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1008-1022.	4.1	595
33	S100B Secretion in Acute Brain Slices: Modulation by Extracellular Levels of Ca2+ and K+. Neurochemical Research, 2009, 34, 1603-1611.	3.3	51
34	RAGE: A Single Receptor for Several Ligands and Different Cellular Responses: The Case of Certain S100 Proteins. Current Molecular Medicine, 2007, 7, 711-724.	1.3	238
35	S100B binding to RAGE in microglia stimulates COX-2 expression. Journal of Leukocyte Biology, 2007, 81, 108-118.	3.3	130
36	RAGE Expression in Rhabdomyosarcoma Cells Results in Myogenic Differentiation and Reduced Proliferation, Migration, Invasiveness, and Tumor Growth. American Journal of Pathology, 2007, 171, 947-961.	3.8	56

#	Article	IF	Citations
37	S100B stimulates myoblast proliferation and inhibits myoblast differentiation by independently stimulating ERK1/2 and inhibiting p38 MAPK. Journal of Cellular Physiology, 2006, 207, 461-470.	4.1	36
38	The Amphoterin (HMGB1)/Receptor for Advanced Glycation End Products (RAGE) Pair Modulates Myoblast Proliferation, Apoptosis, Adhesiveness, Migration, and Invasiveness. Journal of Biological Chemistry, 2006, 281, 8242-8253.	3 . 4	105
39	S100b counteracts effects of the neurotoxicant trimethyltin on astrocytes and microglia. Journal of Neuroscience Research, 2005, 81, 677-686.	2.9	63
40	S100B Increases Proliferation in PC12 Neuronal Cells and Reduces Their Responsiveness to Nerve Growth Factor via Akt Activation. Journal of Biological Chemistry, 2005, 280, 4402-4414.	3.4	72
41	S100B-stimulated NO production by BV-2 microglia is independent of RAGE transducing activity but dependent on RAGE extracellular domain. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1742, 169-177.	4.1	93
42	Amphoterin Stimulates Myogenesis and Counteracts the Antimyogenic Factors Basic Fibroblast Growth Factor and S100B via RAGE Binding. Molecular and Cellular Biology, 2004, 24, 4880-4894.	2.3	115
43	S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner. Journal of Cellular Physiology, 2004, 199, 274-283.	4.1	63
44	Intracellular and extracellular roles of S100 proteins. Microscopy Research and Technique, 2003, 60, 540-551.	2.2	829
45	S100B Inhibits Myogenic Differentiation and Myotube Formation in a RAGE-Independent Manner. Molecular and Cellular Biology, 2003, 23, 4870-4881.	2.3	75
46	S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. International Journal of Biochemistry and Cell Biology, 2001, 33, 637-668.	2.8	1,401
47	S100b expression in and effects on microglia. Glia, 2001, 33, 131-142.	4.9	176
48	S100b expression in and effects on microglia. , 2001, 33, 131.		1
49	Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. Journal of Biological Chemistry, 2000, 275, 40096-40105.	3.4	516
50	Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1450, 191-231.	4.1	594
51	Effects of calciumâ€binding proteins (Sâ€100a o , Sâ€100a, Sâ€100b) on desmin assembly in vitro. FASEB Journal 1996, 10, 317-324.	'0.5	46
52	Immunocytochemical analyses of annexin V (CaBP33) in a human-derived glioma cell line. FEBS Letters, 1993, 323, 45-50.	2.8	20
53	Membrane-bound annexin V isoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Letters, 1992, 296, 158-162.	2.8	59
54	Immunocytochemical localization of annexin V (CaBP33), a Ca2+-dependent phospholipid-and membrane-binding protein, in the rat nervous system and skeletal muscles and in the porcine heart. Journal of Cellular Physiology, 1992, 152, 587-598.	4.1	40

#	Article	IF	CITATIONS
55	â€~Neuron-specific' protein gene product 9.5 (PGP 9.5) is also expressed in glioma cell lines and its expression depends on cellular growth state. FEBS Letters, 1991, 290, 131-134.	2.8	17
56	Two novel brain proteins, CaBP33 and CaBP37, are calcium-dependent phospholipid- and membrane-binding proteins. FEBS Letters, 1990, 262, 72-76.	2.8	18
57	Interaction of two brain annexins, CaBP33 and CaBP37, with membrane-skeleton proteins. FEBS Letters, 1990, 267, 171-175.	2.8	16
58	Characterization of mammalian heart annexins with special reference to CaBP33 (annexin V). FEBS Letters, 1990, 277, 53-58.	2.8	36
59	Interaction Between S-100 Proteins and Steady-State and Taxol-Stabilized Microtubules In Vitro. Journal of Neurochemistry, 1989, 52, 1010-1017.	3.9	14
60	Ultracytochemical localization of adenylate cyclase and guanylate cyclase in crushed peripheral nerves. Glia, 1988, 1, 260-274.	4.9	10