
Arturo Moncho-Jorda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3353875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions. Soft Matter, 2022, 18, 397-411.	2.7	12
2	Active binary switching of soft colloids: stability and structural properties. Soft Matter, 2021, 17, 7682-7696.	2.7	10
3	Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of <i>InÂVitro</i> Multicomponent Interpenetrating Cytoskeletal Networks. Physical Review Letters, 2021, 127, 108101.	7.8	15
4	Electrostatic depletion effects on the stability of colloidal dispersions of sepiolite and natural rubber latex. Journal of Colloid and Interface Science, 2020, 560, 606-617.	9.4	6
5	Scaling Laws in the Diffusive Release of Neutral Cargo from Hollow Hydrogel Nanoparticles: Paclitaxel-Loaded Poly(4-vinylpyridine). ACS Nano, 2020, 14, 15227-15240.	14.6	15
6	Controlling the Microstructure and Phase Behavior of Confined Soft Colloids by Active Interaction Switching. Physical Review Letters, 2020, 125, 078001.	7.8	17
7	Crossover of the effective charge in ionic thermoresponsive hydrogel particles. Physical Review E, 2019, 100, 050602.	2.1	6
8	Nonequilibrium Uptake Kinetics of Molecular Cargo into Hollow Hydrogels Tuned by Electrosteric Interactions. ACS Nano, 2019, 13, 1603-1616.	14.6	19
9	Direct determination of forces between charged nanogels through coarse-grained simulations. Physical Review E, 2018, 97, 042608.	2.1	14
10	Evidence of electrostatic-enhanced depletion attraction in the structural properties and phase behavior of binary charged colloidal suspensions. Soft Matter, 2018, 14, 1355-1364.	2.7	15
11	Maximizing the absorption of small cosolutes inside neutral hydrogels: steric exclusion <i>versus</i> hydrophobic adhesion. Physical Chemistry Chemical Physics, 2018, 20, 2814-2825.	2.8	19
12	Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge. Physical Chemistry Chemical Physics, 2017, 19, 6838-6848.	2.8	31
13	Sorption and Spatial Distribution of Protein Globules in Charged Hydrogel Particles. Langmuir, 2017, 33, 4567-4577.	3.5	21
14	Conformation change of an isotactic poly (N-isopropylacrylamide) membrane: Molecular dynamics. Journal of Chemical Physics, 2017, 146, 194905.	3.0	22
15	Cosolute Partitioning in Polymer Networks: Effects of Flexibility and Volume Transitions. Macromolecules, 2017, 50, 6227-6237.	4.8	27
16	Thermoresponsive microgels at the air–water interface: the impact of the swelling state on interfacial conformation. Soft Matter, 2017, 13, 230-238.	2.7	29
17	The effect of electrosteric interactions on the effective charge of thermoresponsive ionic microgels: Theory and experiments. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2038-2049.	2.1	14
18	Swelling of ionic microgel particles in the presence of excluded-volume interactions: a density functional approach. Physical Chemistry Chemical Physics, 2016, 18, 5372-5385.	2.8	29

Arturo Moncho-Jorda

#	Article	IF	CITATIONS
19	A comparative study on the effect of hydrodynamic interactions in the non-sequential deposition of concentrated colloidal dispersions: stochastic rotation dynamics and Brownian dynamics simulations. Molecular Physics, 2015, 113, 3587-3597.	1.7	3
20	Wall–particle interactions and depletion forces in narrow slits. Current Opinion in Colloid and Interface Science, 2015, 20, 24-31.	7.4	5
21	Role of Steric Interactions on the Ionic Permeation Inside Charged Microgels: Theory and Simulations. Macromolecules, 2015, 48, 4645-4656.	4.8	32
22	On the scattered light by dilute aqueous dispersions of nanogel particles. Journal of Colloid and Interface Science, 2015, 450, 310-315.	9.4	3
23	lon permeation inside microgel particles induced by specific interactions: from charge inversion to overcharging. Soft Matter, 2014, 10, 5810.	2.7	28
24	Nanogels for Drug Delivery: the Key Role of Nanogel–Drug Interactions. RSC Nanoscience and Nanotechnology, 2014, , 133-156.	0.2	2
25	Effective electrostatic interactions arising in core-shell charged microgel suspensions with added salt. Journal of Chemical Physics, 2013, 138, 134902.	3.0	36
26	Further details on the phase diagram of hard ellipsoids of revolution. Journal of Chemical Physics, 2013, 138, 064501.	3.0	41
27	Effective charge of ionic microgel particles in the swollen and collapsed states: The role of the steric microgel-ion repulsion. Journal of Chemical Physics, 2013, 139, 064906.	3.0	33
28	Brownian dynamics simulation of monolayer formation by deposition of colloidal particles: A kinetic study at high bulk particle concentration. European Physical Journal E, 2012, 35, 69.	1.6	4
29	Effective interaction in asymmetric charged binary mixtures: The non-monotonic behaviour with the colloidal charge. European Physical Journal E, 2012, 35, 120.	1.6	4
30	Role of the electrostatic depletion attraction on the structure of charged liposome-polymer mixtures. Physical Review E, 2012, 85, 051405.	2.1	7
31	How Péclet number affects microstructure and transient cluster aggregation in sedimenting colloidal suspensions. Journal of Chemical Physics, 2012, 136, 064517.	3.0	9
32	Charged colloid-polymer mixtures: A study on electrostatic depletion attraction. Journal of Chemical Physics, 2011, 134, 054905.	3.0	12
33	Effects of Interparticle Attractions on Colloidal Sedimentation. Physical Review Letters, 2010, 104, 068301.	7.8	40
34	Structure of charged colloid-polymer mixtures. Europhysics Letters, 2010, 90, 46005.	2.0	20
35	Multiple time scales and cluster formation mechanisms in charge-heteroaggregation processes. Soft Matter, 2010, 6, 3568.	2.7	4
36	Electrostatic heteroaggregation regimes in colloidal suspensions. Advances in Colloid and Interface Science, 2009, 147-148, 186-204.	14.7	38

Arturo Moncho-Jorda

#	Article	IF	CITATIONS
37	Density profiles and solvation forces for a Yukawa fluid in a slit pore. Journal of Chemical Physics, 2008, 128, 204704.	3.0	38
38	Two-dimensional colloidal aggregation mediated by the range of repulsive interactions. Physical Review E, 2007, 75, 041408.	2.1	9
39	Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes. Soft Matter, 2006, 2, 1025.	2.7	102
40	Self-Assembly in Two-Dimensions of Colloidal Particles at Liquid Mixtures. Langmuir, 2006, 22, 6746-6749.	3.5	9
41	Short- and long-range topological correlations in two-dimensional aggregation of dense colloidal suspensions. Physical Review E, 2005, 71, 041401.	2.1	5
42	Formation and structure of stable aggregates in binary diffusion-limited cluster-cluster aggregation processes. Physical Review E, 2005, 72, 031401.	2.1	16
43	Density-Functional Study of Interfacial Properties of Colloidâ^'Polymer Mixturesâ€. Journal of Physical Chemistry B, 2005, 109, 6640-6649.	2.6	15
44	Coupled aggregation and sedimentation processes: stochastic mean field theory. Physica A: Statistical Mechanics and Its Applications, 2004, 335, 35-46.	2.6	7
45	Simulations of colloidal aggregation with short- and medium-range interactions. Physica A: Statistical Mechanics and Its Applications, 2004, 333, 257-268.	2.6	6
46	Colloidal Aggregation in Two-Dimensions. , 2004, , 113-209.		0
47	Spontaneous Formation of Mesostructures in Colloidal Monolayers Trapped at the Airâ^'Water Interface:Â A Simple Explanation. Langmuir, 2004, 20, 6977-6980.	3.5	36
48	Effect of polymer–polymer interactions on the surface tension of colloid–polymer mixtures. Journal of Chemical Physics, 2003, 119, 12667-12672.	3.0	17
49	Modeling the aggregation of partially covered particles: Theory and simulation. Physical Review E, 2003, 68, 011404.	2.1	15
50	Coupled aggregation and sedimentation processes: The sticking probability effect. Physical Review E, 2003, 67, 031401.	2.1	14
51	The Asakura–Oosawa model in the protein limit: the role of many-body interactions. Journal of Physics Condensed Matter, 2003, 15, S3429-S3442.	1.8	38
52	Constant bond breakup probability model for reversible aggregation processes. Physical Review E, 2002, 65, 031405.	2.1	40
53	Role of Long-Range Repulsive Interactions in Two-Dimensional Colloidal Aggregation:Â Experiments and Simulations. Langmuir, 2002, 18, 9183-9191.	3.5	37
54	Two-Dimensional Colloidal Aggregation: Concentration Effects. Journal of Colloid and Interface Science, 2002, 246, 227-234.	9.4	28

0

#	Article	IF	CITATIONS
55	The Effect of the Salt Concentration and Counterion Valence on the Aggregation of Latex Particles at the Air/Water Interface. Journal of Colloid and Interface Science, 2002, 249, 405-411.	9.4	15
56	Concentration effects on two- and three-dimensional colloidal aggregation. Physica A: Statistical Mechanics and Its Applications, 2002, 314, 235-245.	2.6	30
57	The DLCA-RLCA transition arising in 2D-aggregation: simulations and mean field theory. European Physical Journal E, 2001, 5, 471-480.	1.6	25
58	Comparative study of theories of conversion of electrophoretic mobility into ζ-potential. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192, 215-226.	4.7	16
59	A probabilistic aggregation kernel for the computer-simulated transition from DLCA to RLCA. Europhysics Letters, 2001, 53, 797-803.	2.0	58
60	Probing interaction forces in colloidal monolayers: Inversion of structural data. Journal of Chemical Physics, 2001, 115, 10897-10902.	3.0	62
61	The kinetics of irreversible aggregation processes. , 2001, , 87-90.		1
62	Simulations of aggregation in 2D. A study of kinetics, structure and topological properties. Physica A: Statistical Mechanics and Its Applications, 2000, 282, 50-64.	2.6	11
63	Multiple contact kernel for diffusionlike aggregation. Physical Review E, 2000, 62, 8335-8343.	2.1	39

64 Structure and interaction forces in colloidal monolayers. , 0, , 119-122.