Shafeer Kalathil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3353821/publications.pdf

Version: 2024-02-01

34 papers

2,643 citations

257101 24 h-index 433756 31 g-index

34 all docs

34 docs citations

times ranked

34

4029 citing authors

#	Article	IF	CITATIONS
1	Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals. RSC Advances, 2022, 12, 16396-16411.	1.7	7
2	Editorial: Microbial Electrogenesis, Microbial Electrosynthesis, and Electro-bioremediation. Frontiers in Microbiology, 2021, 12, 742479.	1.5	1
3	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	19.8	156
4	Semi-biological approaches to solar-to-chemical conversion. Chemical Society Reviews, 2020, 49, 4926-4952.	18.7	157
5	Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of <i>Geobacter sulfurreducens</i> Biofilms. Journal of the American Chemical Society, 2020, 142, 5194-5203.	6.6	59
6	A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5074-5080.	3.3	48
7	Synthesis of an amorphous <i>Geobacter</i> -manganese oxide biohybrid as an efficient water oxidation catalyst. Green Chemistry, 2020, 22, 5610-5618.	4.6	11
8	Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped <i>Geobacter sulfurreducens</i> as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction. Chemistry of Materials, 2019, 31, 3686-3693.	3.2	47
9	Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. Journal of Saudi Chemical Society, 2018, 22, 919-929.	2.4	75
10	Dualâ€Function Electrocatalytic and Macroporous Hollowâ€Fiber Cathode for Converting Waste Streams to Valuable Resources Using Microbial Electrochemical Systems. Advanced Materials, 2018, 30, e1707072.	11.1	100
11	Reactor Design for Bioelectrochemical Systems. , 2018, , 209-227.		2
12	Microbial Fuel Cells: Electrode Materials. , 2018, , 309-318.		30
13	Proton Transport in the Outerâ€Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport. Angewandte Chemie, 2017, 129, 9210-9214.	1.6	4
14	Proton Transport in the Outerâ€Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport. Angewandte Chemie - International Edition, 2017, 56, 9082-9086.	7.2	51
15	Hollow Palladium Nanoparticles Facilitated Biodegradation of an Azo Dye by Electrically Active Biofilms. Materials, 2016, 9, 653.	1.3	5
16	Nanotechnology to rescue bacterial bidirectional extracellular electron transfer in bioelectrochemical systems. RSC Advances, 2016, 6, 30582-30597.	1.7	109
17	Effect of Ionic Strength on the Rate of Extracellular Electron Transport in ⟨i⟩Shewanella oneidensis⟨ i⟩ MRâ€1 through Boundâ€Flavin Semiquinones. ChemElectroChem, 2014, 1, 1840-1843.	1.7	7
18	Band gap engineering of CeO ₂ nanostructure using an electrochemically active biofilm for visible light applications. RSC Advances, 2014, 4, 16782-16791.	1.7	266

#	Article	IF	Citations
19	Cell-secreted Flavins Bound to Membrane Cytochromes Dictate Electron Transfer Reactions to Surfaces with Diverse Charge and pH. Scientific Reports, 2014, 4, 5628.	1.6	141
20	Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5, 9238.	2.8	523
21	Gold Nanoparticles Produced Inâ€Situ Mediate Bioelectricity and Hydrogen Production in a Microbial Fuel Cell by Quantized Capacitance Charging. ChemSusChem, 2013, 6, 246-250.	3.6	34
22	Catalytic role of Au@TiO2 nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	4
23	Simultaneous Enhancement of Methylene Blue Degradation and Power Generation in a Microbial Fuel Cell by Gold Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 8174-8181.	1.8	81
24	Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 2013, 31, 915-924.	6.0	57
25	Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 2013, 5, 6323.	2.8	155
26	Synthesis of Positively Charged Gold Nanoparticles Using a Stainless-Steel Mesh. Journal of Nanoscience and Nanotechnology, 2013, 13, 6140-6144.	0.9	15
27	Enhanced Performance of a Microbial Fuel Cell Using CNT/MnO ₂ Nanocomposite as a Bioanode Material. Journal of Nanoscience and Nanotechnology, 2013, 13, 7712-7716.	0.9	58
28	Positively Charged Gold Nanoparticles Synthesized by Electrochemically Active Biofilm—A Biogenic Approach. Journal of Nanoscience and Nanotechnology, 2013, 13, 6079-6085.	0.9	44
29	Synthesis of Cysteine Capped Silver Nanoparticles by Electrochemically Active Biofilm and their Antibacterial Activities. Bulletin of the Korean Chemical Society, 2012, 33, 2592-2596.	1.0	74
30	A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	37
31	Efficient decolorization of real dye wastewater and bioelectricity generation using a novel single chamber biocathode-microbial fuel cell. Bioresource Technology, 2012, 119, 22-27.	4.8	76
32	Enhancement in the Photocatalytic Activity of Au@TiO ₂ Nanocomposites by Pretreatment of TiO ₂ with UV Light. Bulletin of the Korean Chemical Society, 2012, 33, 1753-1758.	1.0	29
33	Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chemistry, 2011, 13, 1482.	4.6	78
34	Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 2011, 29, 32-37.	2.4	102