Nicholas W Morrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335367/publications.pdf Version: 2024-02-01

207 papers	22,751 citations	9264 74 h-index	9345 143 g-index
219	219	219	19153
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Cellular and molecular pathobiology of pulmonary arterial hypertension. Journal of the American College of Cardiology, 2004, 43, S13-S24.	2.8	1,322
2	Genomic atlas of the human plasma proteome. Nature, 2018, 558, 73-79.	27.8	1,180
3	Cellular and Molecular Basis of Pulmonary Arterial Hypertension. Journal of the American College of Cardiology, 2009, 54, S20-S31.	2.8	714
4	Clinical and Molecular Genetic Features of Pulmonary Hypertension in Patients with Hereditary Hemorrhagic Telangiectasia. New England Journal of Medicine, 2001, 345, 325-334.	27.0	676
5	Elevated Levels of Inflammatory Cytokines Predict Survival in Idiopathic and Familial Pulmonary Arterial Hypertension. Circulation, 2010, 122, 920-927.	1.6	661
6	Inflammation, Growth Factors, and Pulmonary Vascular Remodeling. Journal of the American College of Cardiology, 2009, 54, S10-S19.	2.8	605
7	Primary Pulmonary Hypertension Is Associated With Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic Protein Receptor. Circulation, 2002, 105, 1672-1678.	1.6	587
8	Imatinib Mesylate as Add-on Therapy for Pulmonary Arterial Hypertension. Circulation, 2013, 127, 1128-1138.	1.6	482
9	Relevant Issues in the Pathology and Pathobiology of Pulmonary Hypertension. Journal of the American College of Cardiology, 2013, 62, D4-D12.	2.8	465
10	Altered Growth Responses of Pulmonary Artery Smooth Muscle Cells From Patients With Primary Pulmonary Hypertension to Transforming Growth Factor-β ₁ and Bone Morphogenetic Proteins. Circulation, 2001, 104, 790-795.	1.6	421
11	Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nature Medicine, 2015, 21, 777-785.	30.7	389
12	Mutations of the TGF-β type II receptorBMPR2 in pulmonary arterial hypertension. Human Mutation, 2006, 27, 121-132.	2.5	368
13	Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. American Journal of Human Genetics, 2017, 100, 75-90.	6.2	343
14	Whole-genome sequencing of patients with rare diseases in a national health system. Nature, 2020, 583, 96-102.	27.8	338
15	Imatinib in Pulmonary Arterial Hypertension Patients with Inadequate Response to Established Therapy. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1171-1177.	5.6	331
16	Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension. Circulation Research, 2005, 96, 1053-1063.	4.5	319
17	An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. Journal of Clinical Investigation, 2008, 118, 1846-1857.	8.2	314
18	BMPR2 mutations and survival in pulmonary arterial hypertension: an individual participant data meta-analysis. Lancet Respiratory Medicine,the, 2016, 4, 129-137.	10.7	307

#	Article	IF	CITATIONS
19	Genetics and genomics of pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1801899.	6.7	306
20	ET _A and ET _B Receptors Modulate the Proliferation of Human Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory and Critical Care Medicine, 2002, 165, 398-405.	5.6	289
21	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	12.8	279
22	BMP9 Mutations Cause a Vascular-Anomaly Syndrome with Phenotypic Overlap with Hereditary Hemorrhagic Telangiectasia. American Journal of Human Genetics, 2013, 93, 530-537.	6.2	270
23	2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. Journal of Heart and Lung Transplantation, 2019, 38, 879-901.	0.6	266
24	A Role for miR-145 in Pulmonary Arterial Hypertension. Circulation Research, 2012, 111, 290-300.	4.5	263
25	MicroRNA-143 Activation Regulates Smooth Muscle and Endothelial Cell Crosstalk in Pulmonary Arterial Hypertension. Circulation Research, 2015, 117, 870-883.	4.5	246
26	Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Human Molecular Genetics, 2002, 11, 1517-1525.	2.9	231
27	A Novel Murine Model of Severe Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1171-1182.	5.6	231
28	Altered Bone Morphogenetic Protein and Transforming Growth Factor-Î ² Signaling in Rat Models of Pulmonary Hypertension. Circulation, 2009, 119, 566-576.	1.6	230
29	Serotonin Increases Susceptibility to Pulmonary Hypertension in <i>BMPR2</i> -Deficient Mice. Circulation Research, 2006, 98, 818-827.	4.5	227
30	Chloroquine Prevents Progression of Experimental Pulmonary Hypertension via Inhibition of Autophagy and Lysosomal Bone Morphogenetic Protein Type II Receptor Degradation. Circulation Research, 2013, 112, 1159-1170.	4.5	227
31	Long-term Use of Sildenafil in Inoperable Chronic Thromboembolic Pulmonary Hypertension. Chest, 2008, 134, 229-236.	0.8	226
32	Transforming Growth Factor-Î ² Receptor Mutations and Pulmonary Arterial Hypertension in Childhood. Circulation, 2005, 111, 435-441.	1.6	222
33	Evidence of Dysfunction of Endothelial Progenitors in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 780-787.	5.6	206
34	BMPR2 gene rearrangements account for a significant proportion of mutations in familial and idiopathic pulmonary arterial hypertension. Human Mutation, 2006, 27, 212-213.	2.5	196
35	Identification of MicroRNA-124 as a Major Regulator of Enhanced Endothelial Cell Glycolysis in Pulmonary Arterial Hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation, 2017, 136, 2451-2467.	1.6	195
36	Targeting BMP signalling in cardiovascular disease and anaemia. Nature Reviews Cardiology, 2016, 13, 106-120.	13.7	193

#	Article	IF	CITATIONS
37	Pulmonary Arterial Hypertension: A Current Perspective on Established and Emerging Molecular Genetic Defects. Human Mutation, 2015, 36, 1113-1127.	2.5	185
38	Elabela/Toddler Is an Endogenous Agonist of the Apelin APJ Receptor in the Adult Cardiovascular System, and Exogenous Administration of the Peptide Compensates for the Downregulation of Its Expression in Pulmonary Arterial Hypertension. Circulation, 2017, 135, 1160-1173.	1.6	183
39	Molecular genetic framework underlying pulmonary arterial hypertension. Nature Reviews Cardiology, 2020, 17, 85-95.	13.7	181
40	Germline selection shapes human mitochondrial DNA diversity. Science, 2019, 364, .	12.6	178
41	Bone Morphogenetic Protein (BMP) and Activin Type II Receptors Balance BMP9 Signals Mediated by Activin Receptor-like Kinase-1 in Human Pulmonary Artery Endothelial Cells. Journal of Biological Chemistry, 2009, 284, 15794-15804.	3.4	174
42	Metabolic and Proliferative State of Vascular Adventitial Fibroblasts in Pulmonary Hypertension Is Regulated Through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/Pyruvate Kinase Muscle Axis. Circulation, 2017, 136, 2468-2485.	1.6	172
43	Pulmonary Hypertension Due to BMPR2 Mutation: A New Paradigm for Tissue Remodeling?. Proceedings of the American Thoracic Society, 2006, 3, 680-686.	3.5	162
44	TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling. Nature Communications, 2017, 8, 14079.	12.8	162
45	Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension. Circulation, 2017, 135, 460-475.	1.6	154
46	Molecular genetic characterization of SMAD signaling molecules in pulmonary arterial hypertension. Human Mutation, 2011, 32, 1385-1389.	2.5	152
47	HIF2α–arginase axis is essential for the development of pulmonary hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8801-8806.	7.1	140
48	Prostacyclin Analogues Differentially Inhibit Growth of Distal and Proximal Human Pulmonary Artery Smooth Muscle Cells. Circulation, 2000, 102, 3130-3136.	1.6	135
49	Bone morphogenetic protein type 2 receptor gene therapy attenuates hypoxic pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L1182-L1192.	2.9	128
50	Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis. Lancet Respiratory Medicine,the, 2019, 7, 227-238.	10.7	122
51	MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. Journal of Clinical Investigation, 2016, 126, 2495-2508.	8.2	119
52	Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. Journal of Pathology, 2000, 192, 379-384.	4.5	115
53	Characterization of High-Altitude Pulmonary Hypertension in the Kyrgyz. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 1396-1402.	5.6	115
54	Bone Morphogenetic Protein Receptor Type II Deficiency and Increased Inflammatory Cytokine Production. A Gateway to Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 859-872.	5.6	113

#	Article	lF	CITATIONS
55	Caveolae protect endothelial cells from membrane rupture during increased cardiac output. Journal of Cell Biology, 2015, 211, 53-61.	5.2	113
56	Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension. Circulation, 2017, 136, 2022-2033.	1.6	111
57	Smooth Muscle Cell Hypertrophy, Proliferation, Migration and Apoptosis in Pulmonary Hypertension. , 2011, 1, 295-317.		102
58	BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L604-L615.	2.9	101
59	Schistosomiasis-Associated Pulmonary Hypertension. Chest, 2010, 137, 20S-29S.	0.8	100
60	Gremlin Plays a Key Role in the Pathogenesis of Pulmonary Hypertension. Circulation, 2012, 125, 920-930.	1.6	100
61	Correction of Nonsense <i>BMPR2</i> and <i>SMAD9</i> Mutations by Ataluren in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 403-409.	2.9	100
62	Impaired Natural Killer Cell Phenotype and Function in Idiopathic and Heritable Pulmonary Arterial Hypertension. Circulation, 2012, 126, 1099-1109.	1.6	99
63	MicroRNA and vascular remodelling in acute vascular injury and pulmonary vascular remodelling. Cardiovascular Research, 2012, 93, 594-604.	3.8	98
64	Activin-Like Kinase 5 (ALK5) Mediates Abnormal Proliferation of Vascular Smooth Muscle Cells from Patients with Familial Pulmonary Arterial Hypertension and Is Involved in the Progression of Experimental Pulmonary Arterial Hypertension Induced by Monocrotaline. American Journal of Pathology, 2009, 174, 380-389.	3.8	93
65	Mutations in Bone Morphogenetic Protein Type II Receptor Cause Dysregulation of Id Gene Expression in Pulmonary Artery Smooth Muscle Cells. Circulation Research, 2008, 102, 1212-1221.	4.5	92
66	Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 817-828.	2.4	92
67	Smad-Dependent and Smad-Independent Induction of Id1 by Prostacyclin Analogues Inhibits Proliferation of Pulmonary Artery Smooth Muscle Cells In Vitro and In Vivo. Circulation Research, 2010, 107, 252-262.	4.5	89
68	Investigation of Second Genetic Hits at the BMPR2 Locus as a Modulator of Disease Progression in Familial Pulmonary Arterial Hypertension. Circulation, 2005, 111, 607-613.	1.6	88
69	NPR-A–Deficient Mice Show Increased Susceptibility to Hypoxia-Induced Pulmonary Hypertension. Circulation, 1999, 99, 605-607.	1.6	86
70	Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue. Human Molecular Genetics, 2008, 17, 3180-3190.	2.9	86
71	The lysosomal inhibitor, chloroquine, increases cell surface BMPR-II levels and restores BMP9 signalling in endothelial cells harbouring BMPR-II mutations. Human Molecular Genetics, 2013, 22, 3667-3679.	2.9	86
72	BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L370-L378.	2.9	84

#	Article	IF	CITATIONS
73	Endothelial Apoptosis in Pulmonary Hypertension Is Controlled by a microRNA/Programmed Cell Death 4/Caspase-3 Axis. Hypertension, 2014, 64, 185-194.	2.7	84
74	Inhibition of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) reverses experimental pulmonary hypertension. Journal of Experimental Medicine, 2012, 209, 1919-1935.	8.5	83
75	Evidence of a Role for Osteoprotegerin in the Pathogenesis of Pulmonary Arterial Hypertension. American Journal of Pathology, 2008, 172, 256-264.	3.8	80
76	Characterization of <i>GDF2</i> Mutations and Levels of BMP9 and BMP10 in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 575-585.	5.6	80
77	cAMP phosphodiesterase inhibitors potentiate effects of prostacyclin analogs in hypoxic pulmonary vascular remodeling. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 288, L103-L115.	2.9	74
78	ld proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L312-L321.	2.9	74
79	Molecular Mechanisms of Pulmonary Arterial Hypertension. Chest, 2008, 134, 1271-1277.	0.8	70
80	Proteomic Analysis Implicates Translationally Controlled Tumor Protein as a Novel Mediator of Occlusive Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 2125-2135.	1.6	70
81	Pilot study of losartan for pulmonary hypertension in chronic obstructive pulmonary disease. Respiratory Research, 2005, 6, 88.	3.6	69
82	Bone Morphogenetic Protein 9 Is a Mechanistic Biomarker of Portopulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 891-902.	5.6	69
83	Clinical trial protocol for TRANSFORMâ€UK: A therapeutic open″abel study of tocilizumab in the treatment of pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-8.	1.7	67
84	Sex Affects Bone Morphogenetic Protein Type II Receptor Signaling in Pulmonary Artery Smooth Muscle Cells. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 693-703.	5.6	65
85	Sildenafil Potentiates Bone Morphogenetic Protein Signaling in Pulmonary Arterial Smooth Muscle Cells and in Experimental Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 34-42.	2.4	64
86	Neutrophils from patients with heterozygous germline mutations in the von Hippel Lindau protein (pVHL) display delayed apoptosis and enhanced bacterial phagocytosis. Blood, 2006, 108, 3176-3178.	1.4	63
87	Loss-of-Function <i>ABCC8</i> Mutations in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2018, 11, e002087.	3.6	62
88	A Sex-Specific MicroRNA-96/5-Hydroxytryptamine 1B Axis Influences Development of Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1432-1442.	5.6	61
89	Role of soluble endoglin in BMP9 signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17800-17808.	7.1	61
90	Identification of a Lysosomal Pathway Regulating Degradation of the Bone Morphogenetic Protein Receptor Type II. Journal of Biological Chemistry, 2010, 285, 37641-37649.	3.4	59

#	Article	IF	CITATIONS
91	Treatment with Anti–Gremlin 1 Antibody Ameliorates Chronic Hypoxia/SU5416–Induced Pulmonary Arterial Hypertension in Mice. American Journal of Pathology, 2013, 183, 1461-1473.	3.8	58
92	¹⁸ FDG PET Imaging can Quantify Increased Cellular Metabolism in Pulmonary Arterial Hypertension: A Proofâ€ofâ€Principle Study. Pulmonary Circulation, 2011, 1, 448-455.	1.7	57
93	Circulating Angiogenic Modulatory Factors Predict Survival and Functional Class in Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 369-380.	1.7	56
94	Functional Characterization of Bone Morphogenetic Protein Binding Sites and Smad1/5 Activation in Human Vascular Cells. Molecular Pharmacology, 2008, 73, 539-552.	2.3	55
95	Tenascin-C is induced by mutated BMP type II receptors in familial forms of pulmonary arterial hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 291, L694-L702.	2.9	54
96	A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells. Stem Cells Translational Medicine, 2012, 1, 855-865.	3.3	54
97	Transcript Analysis Reveals a Specific HOX Signature Associated with Positional Identity of Human Endothelial Cells. PLoS ONE, 2014, 9, e91334.	2.5	53
98	Generation and Culture of Blood Outgrowth Endothelial Cells from Human Peripheral Blood. Journal of Visualized Experiments, 2015, , e53384.	0.3	53
99	Transforming Growth Factor-β ₁ Represses Bone Morphogenetic Protein–Mediated Smad Signaling in Pulmonary Artery Smooth Muscle Cells via Smad3. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 1135-1145.	2.9	52
100	Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis. British Journal of Pharmacology, 2017, 174, 3284-3301.	5.4	52
101	Loss of SMAD3 Promotes Vascular Remodeling in Pulmonary Arterial Hypertension via MRTF Disinhibition. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 244-260.	5.6	52
102	ACE genotype and risk of high altitude pulmonary hypertension in Kyrghyz highlanders. Lancet, The, 1999, 353, 814.	13.7	50
103	Angiotensin II activates MAPK and stimulates growth of human pulmonary artery smooth muscle via AT ₁ receptors. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L440-L448.	2.9	49
104	Familial pulmonary arterial hypertension by <i>KDR</i> heterozygous loss of function. European Respiratory Journal, 2020, 55, 1902165.	6.7	49
105	Differential effects of TGF-β1 and BMP-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L919-L927.	2.9	48
106	Role of the Aryl Hydrocarbon Receptor in Sugen 5416–induced Experimental Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 320-330.	2.9	47
107	Receptor for Activated C-Kinase 1, a Novel Interaction Partner of Type II Bone Morphogenetic Protein Receptor, Regulates Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Circulation, 2007, 115, 2957-2968.	1.6	46
108	Role of Bone Morphogenetic Protein Receptors in the Development of Pulmonary Arterial Hypertension. Advances in Experimental Medicine and Biology, 2010, 661, 251-264.	1.6	46

#	Article	IF	CITATIONS
109	Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nature Reviews Cardiology, 2022, 19, 314-331.	13.7	46
110	Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 586-594.	5.6	45
111	Single-cell RNA sequencing profiling of mouse endothelial cells in response to pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 2519-2534.	3.8	45
112	Stoichiometric imbalance in the receptor complex contributes to dysfunctional BMPR-II mediated signalling in pulmonary arterial hypertension. Human Molecular Genetics, 2008, 17, 1683-1694.	2.9	44
113	TGF-β and BMPR-II pharmacology—implications for pulmonary vascular diseases. Current Opinion in Pharmacology, 2009, 9, 274-280.	3.5	44
114	Molecular basis of ALK1-mediated signalling by BMP9/BMP10 and their prodomain-bound forms. Nature Communications, 2020, 11, 1621.	12.8	43
115	Rare variant analysis of 4241 pulmonary arterial hypertension cases from an international consortium implicates FBLN2, PDGFD, and rare de novo variants in PAH. Genome Medicine, 2021, 13, 80.	8.2	43
116	BMP-9 Induced Endothelial Cell Tubule Formation and Inhibition of Migration Involves Smad1 Driven Endothelin-1 Production. PLoS ONE, 2012, 7, e30075.	2.5	43
117	BMP4 Induces HO-1 via a Smad-Independent, p38MAPK-Dependent Pathway in Pulmonary Artery Myocytes. American Journal of Respiratory Cell and Molecular Biology, 2007, 37, 598-605.	2.9	42
118	Bone morphogenetic protein 9 (BMP9) and BMP10 enhance tumor necrosis factor-α-induced monocyte recruitment to the vascular endothelium mainly via activin receptor-like kinase 2. Journal of Biological Chemistry, 2017, 292, 13714-13726.	3.4	42
119	MIR503HG Loss Promotes Endothelial-to-Mesenchymal Transition in Vascular Disease. Circulation Research, 2021, 128, 1173-1190.	4.5	41
120	Anticipated Classes of New Medications and Molecular Targets for Pulmonary Arterial Hypertension. Pulmonary Circulation, 2013, 3, 226-244.	1.7	40
121	The transforming growth factorâ€Î²â€"bone morphogenetic protein type signalling pathway in pulmonary vascular homeostasis and disease. Experimental Physiology, 2013, 98, 1262-1266.	2.0	40
122	Regulation of Bone Morphogenetic Protein 9 (BMP9) by Redox-dependent Proteolysis. Journal of Biological Chemistry, 2014, 289, 31150-31159.	3.4	40
123	The Prodomain-bound Form of Bone Morphogenetic Protein 10 Is Biologically Active on Endothelial Cells. Journal of Biological Chemistry, 2016, 291, 2954-2966.	3.4	40
124	Characterization of theBMPR25′-Untranslated Region and a Novel Mutation in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 819-824.	5.6	39
125	Expression of Mutant BMPRâ€Ħ in Pulmonary Endothelial Cells Promotes Apoptosis and a Release of Factors that Stimulate Proliferation of Pulmonary Arterial Smooth Muscle Cells. Pulmonary Circulation, 2011, 1, 103-110.	1.7	39
126	Inhibition of Overactive Transforming Growth Factor–β Signaling by Prostacyclin Analogs in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 733-741.	2.9	39

#	Article	IF	CITATIONS
127	Characterization of adenylyl cyclase isoforms in rat peripheral pulmonary arteries. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L1359-L1369.	2.9	38
128	Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax, 2019, 74, 164-176.	5.6	37
129	Regulation of the ALK1 ligands, BMP9 and BMP10. Biochemical Society Transactions, 2016, 44, 1135-1141.	3.4	35
130	Bone Morphogenetic Protein Type II Receptor Mutations Causing Protein Misfolding in Heritable Pulmonary Arterial Hypertension. Proceedings of the American Thoracic Society, 2010, 7, 395-398.	3.5	34
131	A Potential Role for Exosomal Translationally Controlled Tumor Protein Export in Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 467-478.	2.9	34
132	Circulating BMP9 Protects the Pulmonary Endothelium during Inflammation-induced Lung Injury in Mice. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 1419-1430.	5.6	34
133	A novel cyclic biased agonist of the apelin receptor, MM07, is disease modifying in the rat monocrotaline model of pulmonary arterial hypertension. British Journal of Pharmacology, 2019, 176, 1206-1221.	5.4	32
134	The ADAMTS13–VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2019, 53, 1801805.	6.7	31
135	Traffic exposures, air pollution and outcomes in pulmonary arterial hypertension: a UK cohort study analysis. European Respiratory Journal, 2019, 53, 1801429.	6.7	31
136	Mendelian randomisation and experimental medicine approaches to interleukin-6 as a drug target in pulmonary arterial hypertension. European Respiratory Journal, 2022, 59, 2002463.	6.7	31
137	BMPR2 mutations have short lifetime expectancy in primary pulmonary hypertension. Human Mutation, 2005, 26, 119-124.	2.5	30
138	Id proteins in the vasculature: from molecular biology to cardiopulmonary medicine. Cardiovascular Research, 2014, 104, 388-398.	3.8	30
139	Spontaneous pulmonary hypertension in genetic mouse models of natural killer cell deficiency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L977-L990.	2.9	30
140	Autophagy contributes to BMP type 2 receptor degradation andÂdevelopment of pulmonary arterial hypertension. Journal of Pathology, 2019, 249, 356-367.	4.5	30
141	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	6.1	30
142	Bayesian Inference Associates Rare <i>KDR</i> Variants With Specific Phenotypes in Pulmonary Arterial Hypertension. Circulation Genomic and Precision Medicine, 2021, 14, .	3.6	29
143	Regulation and Function of miRâ€⊋14Âin Pulmonary Arterial Hypertension. Pulmonary Circulation, 2016, 6, 109-117.	1.7	28
144	Reduced circulating BMP10 and BMP9 and elevated endoglin are associated with disease severity, decompensation and pulmonary vascular syndromes in patients with cirrhosis. EBioMedicine, 2020, 56, 102794.	6.1	27

#	Article	IF	CITATIONS
145	Differential IL-1 signaling induced by BMPR2 deficiency drives pulmonary vascular remodeling. Pulmonary Circulation, 2017, 7, 768-776.	1.7	26
146	Mendelian randomisation analysis of red cell distribution width in pulmonary arterial hypertension. European Respiratory Journal, 2020, 55, 1901486.	6.7	26
147	Plasma metabolomics exhibit response to therapy in chronic thromboembolic pulmonary hypertension. European Respiratory Journal, 2021, 57, 2003201.	6.7	25
148	Serum Osteoprotegerin is Increased and Predicts Survival in Idiopathic Pulmonary Arterial Hypertension. Pulmonary Circulation, 2012, 2, 21-27.	1.7	24
149	α1-A680T Variant in GUCY1A3 as a Candidate Conferring Protection From Pulmonary Hypertension Among Kyrgyz Highlanders. Circulation: Cardiovascular Genetics, 2014, 7, 920-929.	5.1	23
150	Hepatic Shunting of Eggs and Pulmonary Vascular Remodeling in <i>Bmpr2</i> ^{<i>+/â^'</i>} Mice with Schistosomiasis. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1355-1365.	5.6	23
151	Genetic associations at regulatory phenotypes improve fine-mapping of causal variants for 12 immune-mediated diseases. Nature Genetics, 2022, 54, 251-262.	21.4	23
152	Bone Morphogenetic Protein 9 Enhances Lipopolysaccharide-Induced Leukocyte Recruitment to the Vascular Endothelium. Journal of Immunology, 2016, 197, 3302-3314.	0.8	22
153	A therapeutic antibody targeting osteoprotegerin attenuates severe experimental pulmonary arterial hypertension. Nature Communications, 2019, 10, 5183.	12.8	22
154	Biallelic variants of <i>ATP13A3</i> cause dose-dependent childhood-onset pulmonary arterial hypertension characterised by extreme morbidity and mortality. Journal of Medical Genetics, 2022, 59, 906-911.	3.2	22
155	Biological heterogeneity in idiopathic pulmonary arterial hypertension identified through unsupervised transcriptomic profiling of whole blood. Nature Communications, 2021, 12, 7104.	12.8	21
156	The integrated stress response in pulmonary disease. European Respiratory Review, 2020, 29, 200184.	7.1	20
157	Approaches to treat pulmonary arterial hypertension by targeting BMPR2: from cell membrane to nucleus. Cardiovascular Research, 2021, 117, 2309-2325.	3.8	20
158	New Mutations and Pathogenesis of Pulmonary Hypertension: Progress and Puzzles in Disease Pathogenesis. Circulation Research, 2022, 130, 1365-1381.	4.5	20
159	A sex-specific reconstitution bias in the competitive CD45.1/CD45.2 congenic bone marrow transplant model. Scientific Reports, 2017, 7, 3495.	3.3	19
160	Homozygous <i>GDF2</i> nonsense mutations result in a loss of circulating BMP9 and BMP10 and are associated with either PAH or an "HHTâ€ŀike―syndrome in children. Molecular Genetics & Genomic Medicine, 2021, 9, e1685.	1.2	19
161	Mining the Plasma Proteome for Insights into the Molecular Pathology of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1449-1460.	5.6	19
162	A novel piperidine identified by stem cell-based screening attenuates pulmonary arterial hypertension by regulating BMP2 and PTGS2 levels. European Respiratory Journal, 2018, 51, 1702229.	6.7	18

#	Article	IF	CITATIONS
163	An iPSC-Derived Myeloid Lineage Model of Herpes Virus Latency and Reactivation. Frontiers in Microbiology, 2019, 10, 2233.	3.5	18
164	The promise of recombinant BMP ligands and other approaches targeting BMPR-II in the treatment of pulmonary arterial hypertension. Global Cardiology Science & Practice, 2015, 2015, 47.	0.4	17
165	Severe Pulmonary Arterial Hypertension Is Characterized by Increased Neutrophil Elastase and Relative Elafin Deficiency. Chest, 2021, 160, 1442-1458.	0.8	17
166	4PBA Restores Signaling of a Cysteine-substituted Mutant BMPR2 Receptor Found in Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2020, 63, 160-171.	2.9	16
167	Bone morphogenetic protein signaling is required for RAD51-mediated maintenance of genome integrity in vascular endothelial cells. Communications Biology, 2018, 1, 149.	4.4	14
168	Modulation of endothelin receptors in the failing right ventricle of the heart and vasculature of the lung in human pulmonary arterial hypertension. Life Sciences, 2014, 118, 391-396.	4.3	13
169	Disrupted Endothelial Cell Layer and Exposed Extracellular Matrix Proteins Promote Capture of Late Outgrowth Endothelial Progenitor Cells. Stem Cells International, 2016, 2016, 1-13.	2.5	13
170	A pro-con debate: current controversies in PAH pathogenesis at the American Thoracic Society International Conference in 2017. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L502-L516.	2.9	13
171	Advances in the molecular regulation of endothelial BMP9 signalling complexes and implications for cardiovascular disease. Biochemical Society Transactions, 2019, 47, 779-791.	3.4	13
172	The Renin–Angiotensin System in Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1138-1139.	5.6	12
173	The endothelial protective factors, BMP9 and BMP10, inhibit CCL2 release by human vascular endothelial cells. Journal of Cell Science, 2020, 133, .	2.0	12
174	Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice. International Journal of Molecular Sciences, 2021, 22, 1756.	4.1	12
175	â€ [~] There and Back Again'—Forward Genetics and Reverse Phenotyping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1408.	2.4	11
176	Estrogen metabolites in a small cohort of patients with idiopathic pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-5.	1.7	11
177	Autoimmunity Is a Significant Feature of Idiopathic Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 81-93.	5.6	9
178	Understanding the Low Penetrance of Bone Morphogenetic Protein Receptor 2 Gene Mutations. Circulation, 2012, 126, 1818-1820.	1.6	8
179	A 3D triâ€culture system reveals that activin receptorâ€like kinase 5 and connective tissue growth factor drive human glomerulosclerosis. Journal of Pathology, 2017, 243, 390-400.	4.5	8
180	Targeting translational readâ€through of premature termination mutations in <i>BMPR2</i> with PTC124 for pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-14.	1.7	8

#	Article	IF	CITATIONS
181	miR-1-5p targets TGF-βR1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension. PLoS ONE, 2020, 15, e0229409.	2.5	8
182	Finding the needle in the haystack: BMP9 and 10 emerge from the genome in pulmonary arterial hypertension. European Respiratory Journal, 2019, 53, 1900078.	6.7	7
183	Plasma levels of apelin are reduced in patients with liver fibrosis and cirrhosis but are not correlated with circulating levels of bone morphogenetic protein 9 and 10. Peptides, 2021, 136, 170440.	2.4	7
184	Hematopoietic stem cell transplantation alters susceptibility to pulmonary hypertension in <i>Bmpr2</i> â€deficient mice. Pulmonary Circulation, 2018, 8, 1-9.	1.7	6
185	Crystal structures of BMPRII extracellular domain in binary and ternary receptor complexes with BMP10. Nature Communications, 2022, 13, 2395.	12.8	6
186	The role of genomics and genetics in pulmonary arterial hypertension. Global Cardiology Science & Practice, 2020, 2020, e202013.	0.4	5
187	Single-cell RNA sequencing reveals that <i>BMPR2</i> mutation regulates right ventricular function <i>via ID</i> genes. European Respiratory Journal, 2022, 60, 2100327.	6.7	5
188	Response by Hadinnapola et al to Letter Regarding Article, "Phenotypic Characterization of <i>EIF2AK4</i> Mutation Carriers in a Large Cohort of Patients Diagnosed Clinically With Pulmonary Arterial Hypertension― Circulation, 2018, 137, 2413-2414.	1.6	3
189	Expression Quantitative Trait Locus Mapping in Pulmonary Arterial Hypertension. Genes, 2020, 11, 1247.	2.4	3
190	Clinically compatible advances in blood-derived endothelial progenitor cell isolation and reprogramming for translational applications. New Biotechnology, 2021, 63, 1-9.	4.4	3
191	Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Communications Biology, 2021, 4, 1002.	4.4	3
192	Generation of a Soluble Form of Human Endoglin Fused to Green Fluorescent Protein. International Journal of Molecular Sciences, 2021, 22, 11282.	4.1	3
193	Towards a molecular classification of pulmonary arterial hypertension. European Respiratory Journal, 2016, 48, 987-989.	6.7	2
194	Letter by Morrell et al Regarding Article, "Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension― Circulation Research, 2019, 124, e81.	4.5	2
195	Screening asymptomatic <i>BMPR2</i> mutation carriers: a new frontier for pulmonary hypertension physicians?. European Respiratory Journal, 2021, 58, 2100286.	6.7	2
196	Different Cytokine Patterns in BMPR2-Mutation-Positive Patients and Patients With Pulmonary Arterial Hypertension Without Mutations and Their Influence on Survival. Chest, 2022, 161, 1651-1656.	0.8	2
197	An emerging class of new therapeutics targeting <scp>TGF</scp> , Activin, and <scp>BMP</scp> ligands in pulmonary arterial hypertension. Developmental Dynamics, 2023, 252, 327-342.	1.8	2
198	Pulmonary veno-occlusive disease: characterising a rare but important disease. Lancet Respiratory Medicine,the, 2017, 5, 89-90.	10.7	1

#	Article	IF	CITATIONS
199	Increased Antielastase Activity in Idiopathic Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 652-655.	2.9	1
200	Deprivation and prognosis in patients with pulmonary arterial hypertension: missing the effect of deprivation on a rare disease?. European Respiratory Journal, 2020, 56, 1902334.	6.7	1
201	Reply to "Letter to the Editor: Is Id3 proliferative or antiproliferative?― American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L336-L337.	2.9	0
202	Abstract 202: The Role of Neutrophil Extracellular Traps in the Pathogenesis of Pulmonary Hypertension Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	0
203	Biased apelin receptor agonists for cardiovascular disease. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY85-1.	0.0	0
204	Title is missing!. , 2020, 15, e0229409.		0
205	Title is missing!. , 2020, 15, e0229409.		0
206	Title is missing!. , 2020, 15, e0229409.		0
207	Title is missing!. , 2020, 15, e0229409.		0