List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335352/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	3.7	1,199
2	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
3	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
4	A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586, 248-256.	13.7	814
5	Global atmospheric carbon budget: results from an ensemble of atmospheric CO ₂ inversions. Biogeosciences, 2013, 10, 6699-6720.	1.3	356
6	HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 2073-2086.	1.6	351
7	TransCom model simulations of CH ₄ and related species: linking transport, surface flux and chemical loss with CH ₄ variability in the troposphere and lower stratosphere. Atmospheric Chemistry and Physics, 2011, 11, 12813-12837	1.9	331
8	Enhanced Seasonal Exchange of CO ₂ by Northern Ecosystems Since 1960. Science, 2013, 341, 1085-1089.	6.0	329
9	Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9, 993-998.	8.1	229
10	TransCom model simulations of hourly atmospheric CO ₂ : Experimental overview and diurnal cycle results for 2002. Global Biogeochemical Cycles, 2008, 22, .	1.9	142
11	Observational evidence for interhemispheric hydroxyl-radical parity. Nature, 2014, 513, 219-223.	13.7	121
12	TransCom model simulations of hourly atmospheric CO ₂ : Analysis of synopticâ€scale variations for the period 2002–2003. Global Biogeochemical Cycles, 2008, 22, .	1.9	119
13	Variations in global methane sources and sinks during 1910–2010. Atmospheric Chemistry and Physics, 2015, 15, 2595-2612.	1.9	108
14	Validation of XCO ₂ derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmospheric Chemistry and Physics, 2013, 13, 9771-9788.	1.9	106
15	Interannual and decadal changes in the sea-air CO2flux from atmospheric CO2inverse modeling. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	1.9	105
16	Role of biomass burning and climate anomalies for land-atmosphere carbon fluxes based on inverse modeling of atmospheric CO2. Global Biogeochemical Cycles, 2005, 19, .	1.9	101
17	The carbon budget of South Asia. Biogeosciences, 2013, 10, 513-527.	1.3	94
18	Top–down assessment of the Asian carbon budget since the mid 1990s. Nature Communications, 2016, 7, 10724.	5.8	93

#	Article	IF	CITATIONS
19	The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon. Biogeosciences, 2010, 7, 2091-2100.	1.3	91
20	Global and regional emissions estimates for N ₂ O. Atmospheric Chemistry and Physics, 2014, 14, 4617-4641.	1.9	91
21	Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems and Environment, 2018, 252, 148-158.	2.5	88
22	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
23	Statistics of atmospheric correlations. Physical Review E, 2001, 64, 016102.	0.8	84
24	Tropospheric distribution and variability of N ₂ O: Evidence for strong tropical emissions. Geophysical Research Letters, 2011, 38, .	1.5	78
25	Carbon balance of South Asia constrained by passenger aircraft CO ₂ measurements. Atmospheric Chemistry and Physics, 2011, 11, 4163-4175.	1.9	78
26	Global atmospheric CO ₂ inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate. Biogeosciences, 2019, 16, 117-134.	1.3	77
27	Global inverse modeling of CH ₄ sources and sinks: an overview of methods. Atmospheric Chemistry and Physics, 2017, 17, 235-256.	1.9	75
28	PM2.5 diminution and haze events over Delhi during the COVID-19 lockdown period: an interplay between the baseline pollution and meteorology. Scientific Reports, 2020, 10, 13442.	1.6	75
29	Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere. Journal of the Meteorological Society of Japan, 2009, 87, 635-663.	0.7	74
30	Transport mechanisms for synoptic, seasonal and interannual SF ₆ variations and "age" of air in troposphere. Atmospheric Chemistry and Physics, 2009, 9, 1209-1225.	1.9	71
31	The impact of transport model differences on CO ₂ surface flux estimates from OCO-2 retrievals of column average CO ₂ . Atmospheric Chemistry and Physics, 2018, 18, 7189-7215.	1.9	70
32	Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. National Science Review, 2021, 8, nwaa145.	4.6	70
33	Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling. Atmospheric Chemistry and Physics, 2013, 13, 9917-9937.	1.9	68
34	Air–sea CO ₂ flux in the Pacific Ocean for the period 1990–2009. Biogeosciences, 2014, 11, 709-734.	1.3	68
35	Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. Journal of Geophysical Research, 2007, 112, .	3.3	64
36	Nitrous oxide emissions from the Arabian Sea: A synthesis. Atmospheric Chemistry and Physics, 2001, 1, 61-71.	1.9	62

#	Article	IF	CITATIONS
37	Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17379-17384.	3.3	59
38	The severe Delhi SMOG of 2016: A case of delayed crop residue burning, coincident firecracker emissions, and atypical meteorology. Atmospheric Pollution Research, 2019, 10, 868-879.	1.8	59
39	Sources of Uncertainty in Regional and Global Terrestrial CO ₂ Exchange Estimates. Global Biogeochemical Cycles, 2020, 34, e2019GB006393.	1.9	59
40	Gridded fossil CO2 emissions and related O2 combustion consistent with national inventories 1959–2018. Scientific Data, 2021, 8, 2.	2.4	56
41	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	4.2	56
42	Regional Methane Emission Estimation Based on Observed Atmospheric Concentrations (2002-2012). Journal of the Meteorological Society of Japan, 2016, 94, 91-113.	0.7	55
43	Globalâ€scale transport of carbon dioxide in the troposphere. Journal of Geophysical Research, 2008, 113, .	3.3	54
44	A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine. Atmospheric Chemistry and Physics, 2016, 16, 9163-9187.	1.9	51
45	Temporal variations of atmospheric CO ₂ and CO at Ahmedabad in western India. Atmospheric Chemistry and Physics, 2016, 16, 6153-6173.	1.9	51
46	Observed vertical profile of sulphur hexafluoride (SF6) and its atmospheric applications. Journal of Geophysical Research, 1997, 102, 8855-8859.	3.3	50
47	Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM). Scientific Online Letters on the Atmosphere, 2018, 14, 91-96.	0.6	50
48	TransCom N ₂ O model inter-comparison – Part 2: Atmospheric inversion estimates of N ₂ O emissions. Atmospheric Chemistry and Physics, 2014, 14, 6177-6194.	1.9	49
49	The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics. Atmospheric Chemistry and Physics, 2005, 5, 2181-2188.	1.9	48
50	Sea–air CO ₂ fluxes in the Indian Ocean between 1990 and 2009. Biogeosciences, 2013, 10, 7035-7052.	1.3	47
51	U.S. CH ₄ emissions from oil and gas production: Have recent large increases been detected?. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4070-4083.	1.2	47
52	Midâ€upper tropospheric methane in the high Northern Hemisphere: Spaceborne observations by AIRS, aircraft measurements, and model simulations. Journal of Geophysical Research, 2010, 115, .	3.3	44
53	Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion. Geoscience Letters, 2017, 4, .	1.3	44
54	Age of air as a diagnostic for transport timescales in global models. Geoscientific Model Development, 2018, 11, 3109-3130.	1.3	44

#	Article	IF	CITATIONS
55	Strong Southern Ocean carbon uptake evident in airborne observations. Science, 2021, 374, 1275-1280.	6.0	44
56	Stratospheric influence on the seasonal cycle of nitrous oxide in the troposphere as deduced from aircraft observations and model simulations. Journal of Geophysical Research, 2010, 115, .	3.3	43
57	State of the science in reconciling topâ€down and bottomâ€up approaches for terrestrial CO ₂ budget. Global Change Biology, 2020, 26, 1068-1084.	4.2	43
58	An evaluation of CO2observations with Solar Occultation FTS for Inclined-Orbit Satellite sensor for surface source inversion. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	41
59	Atmospheric CO ₂ inversion validation using vertical profile measurements: Analysis of four independent inversion models. Journal of Geophysical Research, 2011, 116, .	3.3	41
60	Three-dimensional variations of atmospheric CO ₂ : aircraft measurements and multi-transport model simulations. Atmospheric Chemistry and Physics, 2011, 11, 13359-13375.	1.9	41
61	Sensitivity of inverse estimation of annual mean CO2sources and sinks to ocean-only sites versus all-sites observational networks. Geophysical Research Letters, 2006, 33, .	1.5	40
62	Long tails in deep columns of natural and anthropogenic tropospheric tracers. Geophysical Research Letters, 2010, 37, .	1.5	40
63	Seasonal variability in distribution and fluxes of methane in the Arabian Sea. Journal of Geophysical Research, 1998, 103, 1167-1176.	3.3	39
64	Evaluation of methane emissions from West Siberian wetlands based on inverse modeling. Environmental Research Letters, 2011, 6, 035201.	2.2	39
65	The terrestrial carbon budget of South and Southeast Asia. Environmental Research Letters, 2016, 11, 105006.	2.2	39
66	Distribution of methane in the tropical upper troposphere measured by CARIBIC and CONTRAIL aircraft. Journal of Geophysical Research, 2012, 117, .	3.3	38
67	Emissions from the Oil and Gas Sectors, Coal Mining and Ruminant Farming Drive Methane Growth over the Past Three Decades. Journal of the Meteorological Society of Japan, 2021, 99, 309-337.	0.7	38
68	The Orbiting Carbon Observatory (OCO-2) tracks 2–3 peta-gram increase in carbon release to the atmosphere during the 2014–2016 El Niño. Scientific Reports, 2017, 7, 13567.	1.6	35
69	Analysis of atmospheric CO2 growth rates at Mauna Loa using CO2 fluxes derived from an inverse model. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 357-365.	0.8	34
70	TransCom N ₂ O model inter-comparison – Part 1: Assessing the influence of transport and surface fluxes on tropospheric N ₂ O variability. Atmospheric Chemistry and Physics, 2014, 14, 4349-4368	1.9	34
71	Definitions and methods to estimate regional land carbon fluxes for the second phase of the REgional Carbon Cycle Assessment and Processes Project (RECCAP-2). Geoscientific Model Development, 2022, 15, 1289-1316.	1.3	34
72	Increasing synoptic scale variability in atmospheric CO ₂ at Hateruma Island associated with increasing East-Asian emissions. Atmospheric Chemistry and Physics, 2010, 10, 453-462.	1.9	33

#	Article	IF	CITATIONS
73	Increasing summer net CO ₂ uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmospheric Chemistry and Physics, 2016, 16, 9047-9066.	1.9	33
74	Incremental approach to the optimal network design for CO2surface source inversion. Geophysical Research Letters, 2002, 29, 97-1-97-4.	1.5	32
75	Plant Regrowth as a Driver of Recent Enhancement of Terrestrial CO ₂ Uptake. Geophysical Research Letters, 2018, 45, 4820-4830.	1.5	32
76	Regional carbon fluxes from land use and land cover change in Asia, 1980–2009. Environmental Research Letters, 2016, 11, 074011.	2.2	31
77	Comment on "Effects of Cosmic Rays on Atmospheric Chlorofluorocarbon Dissociation and Ozone Depletion― Physical Review Letters, 2002, 89, 219803; author reply 219804.	2.9	30
78	Carbon and hydrogen isotopic ratios of atmospheric methane in the upper troposphere over the Western Pacific. Atmospheric Chemistry and Physics, 2012, 12, 8095-8113.	1.9	30
79	Temporal and spatial variations of the atmospheric CO ₂ concentration in China. Geophysical Research Letters, 2008, 35, .	1.5	29
80	Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Scientific Reports, 2021, 11, 9800.	1.6	29
81	Analysis of atmospheric CO ₂ growth rates at Mauna Loa using CO ₂ fluxes derived from an inverse model. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 357.	0.8	28
82	Land use change and El Niño-Southern Oscillation drive decadal carbon balance shifts in Southeast Asia. Nature Communications, 2018, 9, 1154.	5.8	28
83	Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection. Atmospheric Chemistry and Physics, 2013, 13, 1093-1114.	1.9	27
84	What controls the seasonal cycle of columnar methane observed by GOSAT over different regions in India?. Atmospheric Chemistry and Physics, 2017, 17, 12633-12643.	1.9	26
85	TransCom continuous experiment: comparison of ²²² Rn transport at hourly time scales at three stations in Germany. Atmospheric Chemistry and Physics, 2011, 11, 10071-10084.	1.9	25
86	Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO ₂ , CH ₄ and N ₂ O. Atmospheric Chemistry and Physics, 2012, 12, 7767-7777.	1.9	25
87	Recent Slowdown of Anthropogenic Methane Emissions in China Driven by Stabilized Coal Production. Environmental Science and Technology Letters, 2021, 8, 739-746.	3.9	25
88	Effect of recent observations on Asian CO2 flux estimates by transport model inversions. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 522-529.	0.8	24
89	The seasonal cycle amplitude of total column CO2: Factors behind the model-observation mismatch. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	24
90	Simulation of CO ₂ Concentration over East Asia Using the Regional Transport Model WRF-CO ₂ . Journal of the Meteorological Society of Japan, 2012, 90, 959-976.	0.7	24

#	Article	IF	CITATIONS
91	First intercalibration of column-averaged methane from the Total Carbon Column Observing Network and the Network for the Detection of Atmospheric Composition Change. Atmospheric Measurement Techniques, 2013, 6, 397-418.	1.2	24
92	TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3891-3904.	1.2	24
93	Evaluation of column-averaged methane in models and TCCON with a focus on the stratosphere. Atmospheric Measurement Techniques, 2016, 9, 4843-4859.	1.2	23
94	Multispecies Assessment of Factors Influencing Regional CO ₂ and CH ₄ Enhancements During the Winter 2017 ACTâ€America Campaign. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031339.	1.2	23
95	Detection of fossil-fuel CO2Âplummet in China due to COVID-19 by observation at Hateruma. Scientific Reports, 2020, 10, 18688.	1.6	22
96	Estimated regional CO ₂ flux and uncertainty based on an ensemble of atmospheric CO ₂ inversions. Atmospheric Chemistry and Physics, 2022, 22, 9215-9243.	1.9	22
97	Seasonal and spatial variability in N2O distribution in the Arabian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 529-543.	0.6	21
98	Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and validation. Journal of Geophysical Research D: Atmospheres, 2014, 119, 9107-9122.	1.2	21
99	Methyl Chloroform Continues to Constrain the Hydroxyl (OH) Variability in the Troposphere. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033862.	1.2	21
100	Assessing the impact of satellite, aircraft, and surface observations on CO2flux estimation using an ensemble-based 4-D data assimilation system. Journal of Geophysical Research, 2011, 116, .	3.3	20
101	Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites. Atmospheric Chemistry and Physics, 2013, 13, 5265-5275.	1.9	20
102	Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. National Science Review, 2022, 9, nwab200.	4.6	20
103	TransCom satellite intercomparison experiment: Construction of a bias corrected atmospheric CO ₂ climatology. Journal of Geophysical Research, 2011, 116, .	3.3	19
104	Variabilities in the fluxes and annual emissions of nitrous oxide from the Arabian Sea. Global Biogeochemical Cycles, 1998, 12, 321-327.	1.9	18
105	Condensedâ€phase flame retardation in nylon 6â€layered silicate nanocomposites: Films, fibers, and fabrics. Polymer Engineering and Science, 2008, 48, 662-675.	1.5	17
106	The consolidated European synthesis of CH ₄ and N ₂ O emissions for the European Union and United Kingdom: 1990–2017. Earth System Science Data, 2021, 13, 2307-2362.	3.7	16
107	Can Delhi's Pollution be Affected by Crop Fires in the Punjab Region?. Scientific Online Letters on the Atmosphere, 2020, 16, 86-91.	0.6	16
108	Effect of recent observations on Asian CO ₂ flux estimates by transport model inversions. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 522.	0.8	16

#	Article	IF	CITATIONS
109	Formation mechanisms of latitudinal CO ₂ gradients in the upper troposphere over the subtropics and tropics. Journal of Geophysical Research, 2009, 114, .	3.3	15
110	Iconic CO ₂ Time Series at Risk. Science, 2012, 337, 1038-1040.	6.0	15
111	Seasonal and annual variations of CO2 and CH4 at Shadnagar, a semi-urban site. Science of the Total Environment, 2022, 819, 153114.	3.9	15
112	Sensitivity of optimal extension of CO2 observation networks to model transport. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 498-511.	0.8	14
113	Variations of tropospheric methane over Japan during 1988–2010. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 23837.	0.8	14
114	Assessing Lagrangian inverse modelling of urban anthropogenic CO2 fluxes using in situ aircraft and ground-based measurements in the Tokyo area. Carbon Balance and Management, 2019, 14, 6.	1.4	14
115	Aerosol Loading and Radiation Budget Perturbations in Densely Populated and Highly Polluted Indoâ€Gangetic Plain by COVIDâ€19: Influences on Cloud Properties and Air Temperature. Geophysical Research Letters, 2021, 48, e2021GL093796.	1.5	14
116	Halogen Occultation Experiment (HALOE) and balloon-borne in situ measurements of methane in stratosphere and their relation to the quasi-biennial oscillation (QBO). Atmospheric Chemistry and Physics, 2003, 3, 1051-1062.	1.9	13
117	Reconciliation of top-down and bottom-up CO ₂ fluxes in Siberian larch forest. Environmental Research Letters, 2017, 12, 125012.	2.2	13
118	Temporal Variations of the Mole Fraction, Carbon, and Hydrogen Isotope Ratios of Atmospheric Methane in the Hudson Bay Lowlands, Canada. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4695-4711.	1.2	13
119	Seasonal Variations of SF ₆ , CO ₂ , CH ₄ , and N ₂ O in the UT/LS Region due to Emissions, Transport, and Chemistry. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033541.	1.2	13
120	A three-dimensional-model inversion of methyl chloroform to constrain the atmospheric oxidative capacity. Atmospheric Chemistry and Physics, 2021, 21, 4809-4824.	1.9	13
121	Spatio-temporal variability of XCO2 over Indian region inferred from Orbiting Carbon Observatory (OCO-2) satellite and Chemistry Transport Model. Atmospheric Research, 2022, 269, 106044.	1.8	13
122	Temporal Characteristics of CH ₄ Vertical Profiles Observed in the West Siberian Lowland Over Surgut From 1993 to 2015 and Novosibirsk From 1997 to 2015. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,261.	1.2	12
123	Evaluating Simulations of Interhemispheric Transport: Interhemispheric Exchange Time Versus SF ₆ Age. Geophysical Research Letters, 2019, 46, 1113-1120.	1.5	12
124	Trends in methane and sulfur hexafluoride at a tropical coastal site, Thumba (8.6°N, 77.°E), in India. Atmospheric Environment, 2004, 38, 1145-1151.	1.9	10
125	Exploring the sensitivity of interannual basin-scale air-sea CO2fluxes to variability in atmospheric dust deposition using ocean carbon cycle models and atmospheric CO2inversions. Journal of Geophysical Research, 2007, 112, .	3.3	10
126	On the variation of regional CO ₂ exchange over temperate and boreal North America. Global Biogeochemical Cycles, 2013, 27, 991-1000.	1.9	10

#	Article	IF	CITATIONS
127	Simulation of CO 2 concentrations at Tsukuba tall tower using WRF-CO 2 tracer transport model. Journal of Earth System Science, 2016, 125, 47-64.	0.6	10
128	Evaluation of earth system model and atmospheric inversion using total column CO2 observations from GOSAT and OCO-2. Progress in Earth and Planetary Science, 2021, 8, .	1.1	10
129	Measurement report: Regional characteristics of seasonal and long-term variations in greenhouse gases at Nainital, India, and Comilla, Bangladesh. Atmospheric Chemistry and Physics, 2021, 21, 16427-16452.	1.9	10
130	Vertical distribution of methyl bromide over Hyderabad, India. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 373-377.	0.8	9
131	Variability of eddy diffusivity in the stratosphere deduced from vertical distributions of N2O and CFC-12. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59, 1149-1157.	0.6	8
132	The rapidly changing greenhouse gas budget of Asia. Eos, 2012, 93, 237-237.	0.1	8
133	Seasonal and short-term variations in atmospheric potential oxygen at Ny-Ãlesund, Svalbard. Tellus, Series B: Chemical and Physical Meteorology, 2022, 69, 1311767.	0.8	8
134	Assessment of spatio-temporal distribution of CO2 over greater Asia using the WRF–CO2 model. Journal of Earth System Science, 2020, 129, 1.	0.6	8
135	New approach to evaluate satellite-derived XCO ₂ over oceans by integrating ship and aircraft observations. Atmospheric Chemistry and Physics, 2021, 21, 8255-8271.	1.9	8
136	The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project. Remote Sensing of Environment, 2021, 266, 112688.	4.6	8
137	Sensitivity of optimal extension of CO ₂ observation networks to model transport. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 498.	0.8	8
138	Forward and Inverse Modelling of Atmospheric Nitrous Oxide Using MIROC4-Atmospheric Chemistry-Transport Model. Journal of the Meteorological Society of Japan, 2022, 100, 361-386.	0.7	8
139	Vertical distribution of methyl bromide over Hyderabad, India. Tellus, Series B: Chemical and Physical Meteorology, 1994, 46, 373-377.	0.8	7
140	A segmentation algorithm for characterizing rise and fall segments in seasonal cycles: an application to XCO ₂ to estimate benchmarks and assess model bias. Atmospheric Measurement Techniques, 2019, 12, 2611-2629.	1.2	7
141	Are Landâ€Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 2022, 36, .	1.9	7
142	Spatio-temporal variations of the atmospheric greenhouse gases and their sources and sinks in the Arctic region. Polar Science, 2021, 27, 100553.	0.5	6
143	Chlorine partitioning in the stratosphere based on in situ measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 52, 934.	0.8	5
144	Nanocomposite Fibers. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	5

#	Article	IF	CITATIONS
145	An Analysis of Interhemispheric Transport Pathways Based on Threeâ€Dimensional Methane Data by GOSAT Observations and Model Simulations. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
146	GOSAT CH4 Vertical Profiles over the Indian Subcontinent: Effect of a Priori and Averaging Kernels for Climate Applications. Remote Sensing, 2021, 13, 1677.	1.8	4
147	Chlorine partitioning in the stratosphere based on in situ measurements. Tellus, Series B: Chemical and Physical Meteorology, 2000, 52, 934-946.	0.8	4
148	Impact of Changing Winds on the Mauna Loa CO ₂ Seasonal Cycle in Relation to the Pacific Decadal Oscillation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	3
149	Methane sources from waste and natural gas sectors detected in Pune, India, by concentration and isotopic analysis. Science of the Total Environment, 2022, 842, 156721.	3.9	3
150	Corrigendum to "Atmospheric column-averaged mole fractions of carbon dioxide at 53 aircraft measurement sites" published in Atmos. Chem. Phys. 13, 5265–5275, 2013. Atmospheric Chemistry and Physics, 2013, 13, 9213-9216.	1.9	2
151	Coupling between Land and Ocean Biospheres as Observed by Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Scientific Online Letters on the Atmosphere, 2007, 3, 77-80.	0.6	1
152	Applications of top-down methods to anthropogenic GHG emission estimation. , 2022, , 455-481.		0
153	Top-down approaches. , 2022, , 87-155.		0