
Hillary A Snapp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3353494/publications.pdf Version: 2024-02-01

HILLADV A SNADD

#	Article	IF	CITATIONS
1	Effects of extended high frequency bandwidth in osseointegrated bone conduction device users. Hearing Research, 2022, 421, 108379.	2.0	2
2	Instant improvement in monaural spatial hearing abilities through cognitive feedback. Experimental Brain Research, 2022, , 1.	1.5	3
3	Selfâ€Perceived Hearing Status Creates an Unrealized Barrier to Hearing Healthcare Utilization. Laryngoscope, 2021, 131, E289-E295.	2.0	11
4	Normative data for ages 18â€45 for ocular motor and vestibular testing using eye tracking. Laryngoscope Investigative Otolaryngology, 2021, 6, 1116-1127.	1.5	13
5	Portable eye-tracking as a reliable assessment of oculomotor, cognitive and reaction time function: Normative data for 18–45 year old. PLoS ONE, 2021, 16, e0260351.	2.5	9
6	Bone Conduction. Otolaryngologic Clinics of North America, 2021, 54, 1205-1217.	1.1	2
7	Audiology Practices in the Preoperative Evaluation and Management of Adult Cochlear Implant Candidates. JAMA Otolaryngology - Head and Neck Surgery, 2020, 146, 136.	2.2	24
8	Comparisons of performance in pediatric bone conduction implant recipients using remote microphone technology. International Journal of Pediatric Otorhinolaryngology, 2020, 139, 110444.	1.0	4
9	Bilateral bone conduction stimulation provides reliable binaural cues for localization. Hearing Research, 2020, 388, 107881.	2.0	18
10	Hearing with One Ear: Consequences and Treatments for Profound Unilateral Hearing Loss. Journal of Clinical Medicine, 2020, 9, 1010.	2.4	37
11	Oculomotor, vestibular, reaction time and cognitive eye-tracking mild traumatic brain injury assessment. Neurology, 2020, 95, .	1.1	2
12	Nonsurgical Management of Single-Sided Deafness: Contralateral Routing of Signal. Journal of Neurological Surgery, Part B: Skull Base, 2019, 80, 132-138.	0.8	25
13	Application of Wireless Contralateral Routing of Signal Technology in Unilateral Cochlear Implant Users with Bilateral Profound Hearing Loss. Journal of the American Academy of Audiology, 2019, 30, 579-589.	0.7	9
14	Speech Perception Outcomes in Transcutaneous Versus Percutaneous Bone Conduction Stimulation in Individuals With Single-sided Deafness. Otology and Neurotology, 2019, 40, 1068-1075.	1.3	9
15	Acute findings in an acquired neurosensory dysfunction. Laryngoscope Investigative Otolaryngology, 2019, 4, 124-131.	1.5	27
16	Evaluation of multisensory responses (oculomotor, vestibular, and reaction time) in 3, 8 and 15 days after mild traumatic brain injury. Neurology, 2018, 91, .	1.1	0
17	Comparison of Speech-in-Noise and Localization Benefits in Unilateral Hearing Loss Subjects Using Contralateral Routing of Signal Hearing Aids or Bone-Anchored Implants. Otology and Neurotology, 2017, 38, 11-18.	1.3	48
18	The use of oculomotor, vestibular, and reaction time tests to assess mild traumatic brain injury (mTBI) over time. Laryngoscope Investigative Otolaryngology, 2017, 2, 157-165.	1.5	34

HILLARY A SNAPP

#	Article	IF	CITATIONS
19	Effectiveness in Rehabilitation of Current Wireless CROS Technology in Experienced Bone-Anchored Implant Users. Otology and Neurotology, 2017, 38, 1397-1404.	1.3	21
20	Transcranial Attenuation in Patients with Single-Sided Deafness. Audiology and Neuro-Otology, 2016, 21, 237-243.	1.3	14
21	Oculomotor, Vestibular, and Reaction Time Tests in Mild Traumatic Brain Injury. PLoS ONE, 2016, 11, e0162168.	2.5	54
22	Utricular paresis and semicircular canal hyperactivity: a distinct otolith syndrome. Acta Oto-Laryngologica, 2015, 135, 335-341.	0.9	2
23	Utricular Dysfunction in Refractory Benign Paroxysmal Positional Vertigo. Otolaryngology - Head and Neck Surgery, 2014, 151, 321-327.	1.9	7
24	Bone-Anchored Implantation for Single-Sided Deafness in Patients with Less Than Profound Hearing Loss. Otolaryngology - Head and Neck Surgery, 2012, 147, 105-111.	1.9	10
25	Ethnic Disparity in Skin Complications following Bone-Anchored Hearing Aid Implantation. Annals of Otology, Rhinology and Laryngology, 2012, 121, 549-554.	1.1	16
26	Postoperative Validation of Bone-Anchored Implants in the Single-Sided Deafness Population. Otology and Neurotology, 2012, 33, 291-296.	1.3	14
27	Habilitation of Auditory and Vestibular Dysfunction. Otolaryngologic Clinics of North America, 2012, 45, 487-511.	1.1	6
28	Head-shaking nystagmus predicts greater disability in unilateral peripheral vestibulopathy. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2011, 32, 522-527.	1.3	13
29	Early Loading After Single-Stage Bone-Anchored Implantation in Adults. Otolaryngology - Head and Neck Surgery, 2011, 144, 402-407.	1.9	4
30	Head-shaking Nystagmus Predicts Greater Dizziness Handicap. Laryngoscope, 2010, 120, S65-S65.	2.0	7
31	A Clinical Protocol for Predicting Outcomes with an Implantable Prosthetic Device (Baha) in Patients with Single-Sided Deafness. Journal of the American Academy of Audiology, 2010, 21, 654-662.	0.7	20