Byoung-Kyong Min

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3353144/publications.pdf

Version: 2024-02-01

41 papers

2,144 citations

331538 21 h-index 395590 33 g-index

41 all docs

41 docs citations

41 times ranked

2284 citing authors

#	Article	IF	CITATIONS
1	Deep-Learning-Based Automatic Selection of Fewest Channels for Brain–Machine Interfaces. IEEE Transactions on Cybernetics, 2022, 52, 8668-8680.	6.2	7
2	Electrophysiological Decoding of Spatial and Color Processing in Human Prefrontal Cortex. Neurolmage, 2021, 237, 118165.	2.1	4
3	Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Computational and Structural Biotechnology Journal, 2020, 18, 1761-1773.	1.9	45
4	3D CNN based Multilevel Feature Fusion for Workload Estimation. , 2020, , .		0
5	Thalamocortical inhibitory dynamics support conscious perception. NeuroImage, 2020, 220, 117066.	2.1	7
6	Multilevel Feature Fusion With 3D Convolutional Neural Network for EEG-Based Workload Estimation. IEEE Access, 2020, 8, 16009-16021.	2.6	27
7	New Cognitive Neurotechnology Facilitates Studies of Cortical–Subcortical Interactions. Trends in Biotechnology, 2020, 38, 952-962.	4.9	15
8	An online top-down SSVEP-BMI for augmented reality. , 2019, , .		6
9	Applying deep-learning to a top-down SSVEP BMI. , 2018, , .		5
10	Online implementation of top-down SSVEP-BMI. , 2017, , .		1
11	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167.	4.5	26
11	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions	4.5	
	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167. Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017,		26
12	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167. Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017, 35, 585-597. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hearing	4.9	26
12	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167. Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017, 35, 585-597. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hearing Research, 2017, 356, 63-73. Top-down and bottom-up neurodynamic evidence in patients with tinnitus. Hearing Research, 2016, 342,	4.9 0.9	26 28 18
12 13 14	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167. Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017, 35, 585-597. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hearing Research, 2017, 356, 63-73. Top-down and bottom-up neurodynamic evidence in patients with tinnitus. Hearing Research, 2016, 342, 86-100. Decoding of top-down cognitive processing for SSVEP-controlled BMI. Scientific Reports, 2016, 6,	4.9 0.9 0.9	26 28 18 39
12 13 14 15	Individual Identification Using Cognitive Electroencephalographic Neurodynamics. IEEE Transactions on Information Forensics and Security, 2017, 12, 2159-2167. Harnessing Prefrontal Cognitive Signals for Brain–Machine Interfaces. Trends in Biotechnology, 2017, 35, 585-597. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus. Hearing Research, 2017, 356, 63-73. Top-down and bottom-up neurodynamic evidence in patients with tinnitus. Hearing Research, 2016, 342, 86-100. Decoding of top-down cognitive processing for SSVEP-controlled BMI. Scientific Reports, 2016, 6, 36267.	4.9 0.9 0.9	26 28 18 39

#	Article	IF	Citations
19	Future Directions for Brain-Machine Interfacing Technology. Trends in Augmentation of Human Performance, 2015, , 3-18.	0.4	1
20	Neurophysiologic Correlates of Sonication Treatment in Patients with Essential Tremor. Ultrasound in Medicine and Biology, 2015, 41, 124-131.	0.7	15
21	A brain-computer interfacing system using prefrontal EEG signals. , 2014, , .		0
22	Neurophysiological evidence for the country-of-origin effect. NeuroReport, 2014, 25, 274-278.	0.6	9
23	Electroencephalography/sonication-mediated human brain–brain interfacing technology. Trends in Biotechnology, 2014, 32, 345-346.	4.9	4
24	Feature selection for brain-computer interface using nearest neighbor information. , 2014, , .		1
25	Eeg/sonication-based brain-brain interfacing. , 2013, , .		1
26	Bright illumination reduces parietal EEG alpha activity during a sustained attention task. Brain Research, 2013, 1538, 83-92.	1.1	44
27	Illumination influences working memory: An EEG study. Neuroscience, 2013, 247, 386-394.	1.1	26
28	Focused ultrasound modulates region-specific brain activity. NeuroImage, 2011, 56, 1267-1275.	2.1	494
29	Prestimulus top-down reflection of obsessive-compulsive disorder in EEG frontal theta and occipital alpha oscillations. Neuroscience Letters, 2011, 496, 181-185.	1.0	26
30	Transcranial focused ultrasound to the thalamus alters anesthesia time in rats. NeuroReport, 2011, 22, 783-787.	0.6	107
31	A review of low-intensity focused ultrasound pulsation. Brain Stimulation, 2011, 4, 125-136.	0.7	332
32	Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neuroscience, 2011, 12, 23.	0.8	226
33	Focused ultrasound modulates the level of cortical neurotransmitters: Potential as a new functional brain mapping technique. International Journal of Imaging Systems and Technology, 2011, 21, 232-240.	2.7	72
34	Neuroimaging-based approaches in the brain–computer interface. Trends in Biotechnology, 2010, 28, 552-560.	4.9	114
35	Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation. BMC Neuroscience, 2010, 11, 79.	0.8	67
36	A thalamic reticular networking model of consciousness. Theoretical Biology and Medical Modelling, 2010, 7, 10.	2.1	82

#	Article	IF	CITATIONS
37	EEG oscillations reflect visual short-term memory processes for the change detection in human faces. NeuroImage, 2010, 53, 629-637.	2.1	19
38	Prestimulus EEG alpha activity reflects temporal expectancy. Neuroscience Letters, 2008, 438, 270-274.	1.0	25
39	The best of both worlds: Phase-reset of human EEG alpha activity and additive power contribute to ERP generation. International Journal of Psychophysiology, 2007, 65, 58-68.	0.5	88
40	Analysis of a choice-reaction task yields a new interpretation of Libet's experiments. International Journal of Psychophysiology, 2007, 67, 151-7.	0.5	23
41	Prestimulus EEG alpha activity reflects prestimulus top-down processing. Neuroscience Letters, 2007, 422, 131-135.	1.0	64