Sascha Beneke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3352625/publications.pdf Version: 2024-02-01

SASCHA RENERE

#	Article	IF	CITATIONS
1	Physiological oxygen and co-culture with human fibroblasts facilitate in vivo-like properties in human renal proximal tubular epithelial cells. Chemico-Biological Interactions, 2022, , 109959.	4.0	3
2	Mitochondria are devoid of poly(ADPâ€ribose)polymeraseâ€1, but harbor its product oligo(ADPâ€ribose). Journal of Cellular Biochemistry, 2021, 122, 507-523.	2.6	4
3	Comparison of Aristolochic acid I derived DNA adduct levels in human renal toxicity models. Toxicology, 2019, 420, 29-38.	4.2	21
4	Canagliflozin mediated dual inhibition of mitochondrial glutamate dehydrogenase and complex I: an off-target adverse effect. Cell Death and Disease, 2018, 9, 226.	6.3	58
5	The NAD + precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair, 2017, 52, 12-23.	2.8	26
6	Detection of Aristolochic acid I DNA adducts via UPLC-MS/MS in RPTEC/TERT1 cells. Toxicology Letters, 2017, 280, S197.	0.8	0
7	Differential cytotoxicity induced by the Titanium(IV)Salan complex Tc52 in G2-phase independent of DNA damage. BMC Cancer, 2016, 16, 469.	2.6	11
8	ZellulÃæ Mikroskopie der Poly(ADPâ€Ribos)ylierung von Proteinen in Echtzeit. Angewandte Chemie, 2016, 128, 11423-11428.	2.0	4
9	Analyzing structure–function relationships of artificial and cancer-associated PARP1 variants by reconstituting TALEN-generated HeLa <i>PARP1</i> knock-out cells. Nucleic Acids Research, 2016, 44, gkw859.	14.5	23
10	Realâ€Time Cellular Imaging of Protein Poly(ADPâ€ribos)ylation. Angewandte Chemie - International Edition, 2016, 55, 11256-11260.	13.8	32
11	Spermatid Head Elongation with Normal Nuclear Shaping Requires ADP-Ribosyltransferase PARP11 (ARTD11) in Mice1. Biology of Reproduction, 2015, 92, 80.	2.7	46
12	Effect of poly(ADP-ribose)polymerase and DNA topoisomerase I inhibitors on the p53/p63-dependent survival of carcinoma cells. Biochemical Pharmacology, 2015, 94, 212-219.	4.4	4
13	Improving Chromatin Immunoprecipitation (ChIP) by Suppression of Method-Induced DNA-Damage Signaling. Methods in Molecular Biology, 2015, 1228, 67-81.	0.9	1
14	Poly(ADP â€ribose)â€mediated interplay of XPA and PARP 1 leads to reciprocal regulation of protein function. FEBS Journal, 2014, 281, 3625-3641.	4.7	59
15	Toxicological properties of the thiolated inorganic arsenic and arsenosugar metabolite thio-dimethylarsinic acid in human bladder cells. Journal of Trace Elements in Medicine and Biology, 2014, 28, 138-146.	3.0	45
16	Cytosolic Ca2+ shifts as early markers of cytotoxicity. Cell Communication and Signaling, 2013, 11, 11.	6.5	11
17	Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology, 2013, 303, 177-186.	4.2	25
18	Molecular mechanisms of Mn induced neurotoxicity: <scp>RONS</scp> generation, genotoxicity, and <scp>DNA</scp> â€damage response. Molecular Nutrition and Food Research, 2013, 57, 1255-1269.	3.3	34

Sascha Beneke

#	Article	IF	CITATIONS
19	Regulation of chromatin structure by poly(ADP-ribosyl)ation. Frontiers in Genetics, 2012, 3, 169.	2.3	80
20	Chromatin Composition Is Changed by Poly(ADP-ribosyl)ation during Chromatin Immunoprecipitation. PLoS ONE, 2012, 7, e32914.	2.5	27
21	Aging of different avian cultured cells: Lack of ROS-induced damage and quality control mechanisms. Mechanisms of Ageing and Development, 2010, 131, 48-59.	4.6	33
22	Enzyme characteristics of recombinant poly(ADP-ribose) polymerases-1 of rat and human origin mirror the correlation between cellular poly(ADP-ribosyl)ation capacity and species-specific life span. Mechanisms of Ageing and Development, 2010, 131, 366-369.	4.6	30
23	Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells. Biochemical Pharmacology, 2010, 80, 1103-1112.	4.4	26
24	High-Affinity Interaction of Poly(ADP-ribose) and the Human DEK Oncoprotein Depends upon Chain Length. Biochemistry, 2010, 49, 7119-7130.	2.5	49
25	A caveat in mouse genetic engineering: ectopic gene targeting in ES cells by bidirectional extension of the homology arms of a gene replacement vector carrying human PARP-1. Transgenic Research, 2009, 18, 261-279.	2.4	12
26	Poly(ADP-ribose) polymerase activity in different pathologies – The link to inflammation and infarction. Experimental Gerontology, 2008, 43, 605-614.	2.8	38
27	Rapid regulation of telomere length is mediated by poly(ADP-ribose) polymerase-1. Nucleic Acids Research, 2008, 36, 6309-6317.	14.5	79
28	Poly(ADP-ribosyl)ation in mammalian ageing. Nucleic Acids Research, 2007, 35, 7456-7465.	14.5	94
29	Poly(ADP-Ribosyl)ation and Aging. , 2006, , 234-241.		0
30	The emerging role of poly(ADP-ribose) polymerase-1 in longevity. International Journal of Biochemistry and Cell Biology, 2005, 37, 1043-1053.	2.8	59
31	Ageing and PARP. Pharmacological Research, 2005, 52, 93-99.	7.1	52
32	Poly(ADP-ribosyl)ation and aging. Experimental Gerontology, 2004, 39, 1599-1601.	2.8	35
33	Poly(ADPâ€ribosyl)ation inhibitors: Promising drug candidates for a wide variety of pathophysiologic conditions. International Journal of Cancer, 2004, 111, 813-818.	5.1	78
34	Poly(ADP-Ribosyl)ation, PARP, and Aging. Science of Aging Knowledge Environment: SAGE KE, 2004, 2004, re9-re9.	0.8	19
35	l-Selegiline Potentiates the Cellular Poly(ADP-Ribosyl)ation Response to Ionizing Radiation. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 973-979.	2.5	23
36	Poly(ADP-ribose) polymerase-1, DNA repair and mammalian longevity. Experimental Gerontology, 2002, 37, 1203-1205.	2.8	15

SASCHA BENEKE

#	Article	IF	CITATIONS
37	Glucocorticoids regulate expression of the fatty acid synthase gene in fetal rat type II cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2001, 1534, 56-63.	2.4	15
38	Negative regulation of alkylation-induced sister-chromatid exchange by poly(ADP-ribose) polymerase-1 activity. International Journal of Cancer, 2000, 88, 351-355.	5.1	62
39	Isolation of cDNA encoding full-length rat (Rattus norvegicus) poly(ADP-ribose) polymerase. IUBMB Life, 1997, 43, 755-761.	3.4	4
40	Use of theEscherichia coli uidA gene as a reporter inMethanococcus voltae for the analysis of the regulatory function of the intergenic region between the operons encoding selenium-free hydrogenases. Molecular Genetics and Genomics, 1995, 248, 225-228.	2.4	44