Facundo J Castro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3352562/publications.pdf Version: 2024-02-01

FACUNDO L CASTRO

#	Article	IF	CITATIONS
1	Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying. Journal of Alloys and Compounds, 2001, 321, 46-53.	2.8	163
2	Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties. Journal of Alloys and Compounds, 2002, 339, 261-267.	2.8	123
3	Mechanochemical Synthesis of Magnesium Aluminate Spinel Powder at Room Temperature. Journal of the American Ceramic Society, 2004, 87, 2020-2024.	1.9	80
4	Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects. Journal of Alloys and Compounds, 2002, 330-332, 59-63.	2.8	70
5	Catalytic effect of Ge on hydrogen desorption from MgH2. Journal of Alloys and Compounds, 2002, 334, 277-284.	2.8	49
6	Effect of the nature of the starting materials on the formation of Mg2FeH6. Journal of Alloys and Compounds, 2004, 375, 292-296.	2.8	46
7	Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2 atmosphere. Journal of Alloys and Compounds, 2009, 481, 673-680.	2.8	43
8	Nanostructured Mg for hydrogen production by hydrolysis obtained by MgH2 milling and dehydriding. Journal of Alloys and Compounds, 2020, 827, 154000.	2.8	40
9	Characterization of graphite catalytic effect in reactively ball-milled MgH 2 –C and Mg–C composites. International Journal of Hydrogen Energy, 2011, 36, 9051-9061.	3.8	39
10	Formation, composition and stability of Mg–Co compounds. Journal of Alloys and Compounds, 2005, 396, 182-192.	2.8	37
11	Hydrogen generation from ball milled Mg alloy waste by hydrolysis reaction. Journal of Power Sources, 2020, 479, 228711.	4.0	35
12	Hydrogen sorption properties of a MgH2–10wt.% graphite mixture. Journal of Alloys and Compounds, 2011, 509, S595-S598.	2.8	32
13	Study of MgH2Â+ÂNbF5 mixtures: Formation of MgH2â^'F solid solutions and interaction with hydrogen. International Journal of Hydrogen Energy, 2015, 40, 4585-4596.	3.8	29
14	Catalytic effect of monoclinic WO3, hexagonal WO3 and H0.23WO3 on the hydrogen sorption properties of Mg. International Journal of Hydrogen Energy, 2009, 34, 3404-3409.	3.8	27
15	Effect of additive distribution in H2 absorption and desorption kinetics in MgH2 milled with NbH0.9 or NbF5. International Journal of Hydrogen Energy, 2018, 43, 7430-7439.	3.8	27
16	Effects of sulfur poisoning on hydrogen desorption from palladium. Journal of Alloys and Compounds, 2002, 330-332, 612-616.	2.8	26
17	Hydrogen sorption properties of an Mg + WO3 mixture made by reactive mechanical alloying. Journal of Alloys and Compounds, 2004, 366, 303-308.	2.8	26
18	Effect of ball milling strategy (milling device for scaling-up) on the hydrolysis performance of Mg alloy waste. International Journal of Hydrogen Energy, 2020, 45, 20883-20893.	3.8	26

FACUNDO J CASTRO

#	Article	IF	CITATIONS
19	Effects of RMG conditions on the hydrogen sorption properties of Mg+Cr2O3 mixtures. Scripta Materialia, 2005, 52, 33-37.	2.6	23
20	Synthesis of hydrogen tungsten bronzes HxWO3 by reactive mechanical milling of hexagonal WO3. Journal of Alloys and Compounds, 2010, 495, 537-540.	2.8	22
21	Formation of tetragonal hydrogen tungsten bronze by reactive mechanical alloying. Journal of Solid State Chemistry, 2007, 180, 2785-2789.	1.4	20
22	Hydrogen absorption and desorption in the Mg–Ag system. Journal of Alloys and Compounds, 2014, 611, 202-209.	2.8	20
23	Effects of reactive mechanical milling conditions on the physico-chemical properties of Mg+Cr2O3 mixtures. Journal of Alloys and Compounds, 2004, 376, 205-210.	2.8	18
24	A novel thermal desorption spectroscopy apparatus. Review of Scientific Instruments, 2000, 71, 2131-2133.	0.6	12
25	Kinetic improvement of H2 absorption and desorption properties in Mg/MgH2 by using niobium ethoxide as additive. International Journal of Hydrogen Energy, 2019, 44, 11961-11969.	3.8	12
26	MgH2 synthesis during reactive mechanical alloying studied by in-situ pressure monitoring. International Journal of Hydrogen Energy, 2012, 37, 16844-16851.	3.8	11
27	Hydrogen production from hydrolysis of magnesium wastes reprocessed by mechanical milling under air. International Journal of Hydrogen Energy, 2022, 47, 5074-5084.	3.8	11
28	High pressure DSC study of hydrogen sorption in MgH2/graphite mixtures: Effects of sintering and oxidation. International Journal of Hydrogen Energy, 2011, 36, 5411-5417.	3.8	10
29	Bulk effects in Thermal Desorption Spectroscopy. Journal of Chemical Physics, 1998, 109, 6940-6946.	1.2	9
30	Reversible hydrogen storage in Mg(HxF1â^'x)2 solid solutions. Journal of Alloys and Compounds, 2017, 708, 108-114.	2.8	9
31	Hydrogen absorption and desorption properties of Mg/MgH2 with nanometric dispersion of small amounts of Nb(V) ethoxide. International Journal of Hydrogen Energy, 2021, 46, 4126-4136.	3.8	7
32	Experimental and theoretical approach of the hydrolysis of pelleted magnesium alloys scraps. Journal of Alloys and Compounds, 2022, 919, 165784.	2.8	7
33	Application of pressure programmed absorption and desorption to characterize hydriding and dehydriding kinetics of LaNi5 during activation. Journal of Alloys and Compounds, 2007, 446-447, 224-227.	2.8	2
34	Crystal structure of κ-Ag2Mg5. Journal of Solid State Chemistry, 2018, 258, 243-246.	1.4	1
35	Formation, Composition and Stability of Mg—Co Compounds ChemInform, 2005, 36, no.	0.1	0
36	First-Order Phase Transformation at Constant Volume: A Continuous Transition?. Entropy, 2022, 24, 31.	1.1	0