Andrew Cunningham Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3352430/publications.pdf

Version: 2024-02-01

164 papers 11,731 citations

³⁸⁷⁴² 50 h-index

29157 104 g-index

170 all docs

170 docs citations

170 times ranked

8712 citing authors

#	Article	IF	CITATIONS
1	Charcoalified vegetation from the Pennsylvanian of Yorkshire, England: Implications for the interpretation of Carboniferous wildfires. Review of Palaeobotany and Palynology, 2022, 296, 104540.	1.5	4
2	Reconstructing the Tetrastichia bupatides Gordon plant; a Devonian–Mississippian hydrasperman gymnosperm from Oxroad Bay, Scotland and Ballyheigue, Ireland. Review of Palaeobotany and Palynology, 2021, , 104551.	1.5	1
3	A biography and obituary of William G. Chaloner FRS (1928–2016). Palynology, 2020, 44, 127-166.	1.5	5
4	Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact â ¹ /412,800 Years Ago, Parts 1 and 2: A Discussion. Journal of Geology, 2020, 128, 69-94.	1.4	23
5	A note on the charring of spores and implications for coal petrographic analysis and maceral nomenclature. International Journal of Coal Geology, 2020, 219, 103361.	5.0	5
6	A Charcoalified Ovule Adapted for Wind Dispersal and Deterring Herbivory from the Late Viséan (Carboniferous) of Scotland. International Journal of Plant Sciences, 2019, 180, 1059-1074.	1.3	4
7	Heterogeneity of free and occluded bitumen in a natural maturity sequence from Oligocene Lake Enspel. Geochimica Et Cosmochimica Acta, 2019, 245, 240-265.	3.9	9
8	A Tournaisian (earliest Carboniferous) conglomerate-preserved non-marine faunal assemblage and its environmental and sedimentological context. PeerJ, 2019, 6, e5972.	2.0	13
9	Discussion of "Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California―(Schumann et al., 2016. Geomorphology, 268:) Tj ETQq1 1 0.	.78 4 3614 rg	gBTaOverlock
10	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396.	2.4	14
	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west		
10	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396.		14
10	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396. Burning Planet., 2018,, Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and	2.4	14 24
10 11 12	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396. Burning Planet., 2018,,. Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis.	2.4	14 24 49
10 11 12 13	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396. Burning Planet., 2018, , . Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. Journal of Quaternary Science, 2017, 32, 7-34. Interpreting palaeofire evidence from fluvial sediments: a case study from Santa Rosa Island, California, with implications for the Younger Dryas Impact Hypothesis. Journal of Quaternary Science,	2.4 4.4 2.1	14 24 49 39
10 11 12 13	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396. Burning Planet., 2018, , . Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. Journal of Quaternary Science, 2017, 32, 7-34. Interpreting palaeofire evidence from fluvial sediments: a case study from Santa Rosa Island, California, with implications for the Younger Dryas Impact Hypothesis. Journal of Quaternary Science, 2017, 32, 35-47. Fire history on the California Channel Islands spanning human arrival in the Americas. Philosophical	2.4 4.4 2.1 2.1	14 24 49 39 29
10 11 12 13 14	A comparison of charcoal reflectance between crown and surface fire contexts in dry south-west USA forests. International Journal of Wildland Fire, 2018, 27, 396. Burning Planet., 2018, , . Mid-latitude continental temperatures through the early Eocene in western Europe. Earth and Planetary Science Letters, 2017, 460, 86-96. Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. Journal of Quaternary Science, 2017, 32, 7-34. Interpreting palaeofire evidence from fluvial sediments: a case study from Santa Rosa Island, California, with implications for the Younger Dryas Impact Hypothesis. Journal of Quaternary Science, 2017, 32, 35-47. Fire history on the California Channel Islands spanning human arrival in the Americas. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150167. The interaction of fire and mankind: Introduction. Philosophical Transactions of the Royal Society B:	2.4 4.4 2.1 2.1	14 24 49 39 29

#	Article	IF	Citations
19	The interaction of fire and mankind. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160149.	4.0	6
20	The impact of fire on the Late Paleozoic Earth system. Frontiers in Plant Science, 2015, 6, 756.	3.6	83
21	Using the voids to fill the gaps: caves, time, and stratigraphy. Geological Society Special Publication, 2015, 404, 233-250.	1.3	8
22	Incomplete Bayesian model rejects contradictory radiocarbon data for being contradictory. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6722.	7.1	4
23	Early Paleogene wildfires in peat-forming environments at Sch $\tilde{A}\P$ ningen, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 437, 53-62.	2.3	29
24	British Pennsylvanian (Carboniferous) coal-bearing sequences: where is the time?. Geological Society Special Publication, 2015, 404, 283-302.	1.3	8
25	The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change. Numerische Mathematik, 2015, 315, 713-733.	1.4	34
26	Living with Fire: People, Nature and History in Steels Creek. Australian Historical Studies, 2014, 45, 464-465.	0.3	0
27	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	3.0	47
28	Did fire play a role in formation of dinosaur-rich deposits? An example from the Late Cretaceous of Canada. Palaeobiodiversity and Palaeoenvironments, 2013, 93, 317-326.	1.5	11
29	Inconsistent redefining of the carbon spherule "impact―proxy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2244; author reply E2245-7.	7.1	4
30	Paleoecological changes at Lake Cuitzeo were not consistent with an extraterrestrial impact. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2243-E2243.	7.1	2
31	Evolutionary stasis of sporopollenin biochemistry revealed by unaltered Pennsylvanian spores. New Phytologist, 2012, 196, 397-401.	7.3	66
32	Cretaceous wildfires and their impact on the Earth system. Cretaceous Research, 2012, 36, 162-190.	1.4	116
33	Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia. International Journal of Coal Geology, 2012, 89, 13-25.	5.0	57
34	Variability in oxidative degradation of charcoal: Influence of production conditions and environmental exposure. Geochimica Et Cosmochimica Acta, 2011, 75, 2361-2378.	3.9	104
35	First multi-proxy record of Jurassic wildfires from Gondwana: Evidence from the Middle Jurassic of the NeuquA©n Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 299, 129-136.	2.3	49
36	The human dimension of fire regimes on Earth. Journal of Biogeography, 2011, 38, 2223-2236.	3.0	845

#	Article	IF	Citations
37	The Younger Dryas impact hypothesis: A requiem. Earth-Science Reviews, 2011, 106, 247-264.	9.1	110
38	Molecular signature of chitin-protein complex in Paleozoic arthropods. Geology, 2011, 39, 255-258.	4.4	79
39	Fire and the spread of flowering plants in the Cretaceous. New Phytologist, 2010, 188, 1137-1150.	7.3	171
40	Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nature Geoscience, 2010, 3, 627-630.	12.9	271
41	No evidence of nanodiamonds in Younger–Dryas sediments to support an impact event. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16043-16047.	7.1	51
42	Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas "impact layer― Geophysical Research Letters, 2010, 37, .	4.0	51
43	Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. Journal of Archaeological Science, 2010, 37, 1590-1599.	2.4	97
44	ls vitrification in charcoal a result of high temperature burning of wood?. Journal of Archaeological Science, 2010, 37, 2679-2687.	2.4	92
45	Evidence of multiple late Bashkirian to early Moscovian (Pennsylvanian) fire events preserved in contemporaneous cave fills. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 72-84.	2.3	45
46	Charring of woods by volcanic processes: An example from the Taupo ignimbrite, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 40-51.	2.3	30
47	Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis. Palaeogeography, Palaeocology, Palaeoecology, 2010, 291, 11-39.	2.3	362
48	Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291, 1-10.	2.3	107
49	Geochemical evidence for combustion of hydrocarbons during the K-T impact event. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4112-4117.	7.1	50
50	Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2519-2524.	7.1	352
51	Pennsylvanian paleokarst and cave fills from northern Illinois, USA: A window into late Carboniferous environments and landscapes. Palaios, 2009, 24, 627-637.	1.3	56
52	How the Romans got themselves into hot water: temperatures and fuel types used in firing a hypocaust. Environmental Archaeology, 2009, 14, 176-183.	1.2	11
53	Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleoceneâ€Eocene Thermal Maximum at Cobham, Southern England. Grana, 2009, 48, 38-66.	0.8	56
54	An ultrastructural investigation of early Middle Pennsylvanian megaspores from the Illinois Basin, USA. Review of Palaeobotany and Palynology, 2009, 156, 62-78.	1.5	17

#	Article	IF	Citations
55	The use of reflectance values for the interpretation of natural and anthropogenic charcoal assemblages. Archaeological and Anthropological Sciences, 2009, 1, 249.	1.8	63
56	Fire in the Earth System. Science, 2009, 324, 481-484.	12.6	2,330
57	Scanning Electron Microscopy and Synchrotron Radiation X-Ray Tomographic Microscopy of 330 Million Year Old Charcoalified Seed Fern Fertile Organs. Microscopy and Microanalysis, 2009, 15, 166-173.	0.4	20
58	The burning issue. Nature Geoscience, 2008, 1, 643-644.	12.9	3
59	X-ray microtomographic imaging of charcoal. Journal of Archaeological Science, 2008, 35, 2698-2706.	2.4	94
60	Biomolecular characteristics of an extensive tar layer generated during eruption of the Soufrière Hills volcano, Montserrat, West Indies. Organic Geochemistry, 2008, 39, 1372-1383.	1.8	8
61	Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology, 2008, 36, 143.	4.4	27
62	Episodic fire, runoff and deposition at the Palaeocene–Eocene boundary. Journal of the Geological Society, 2007, 164, 87-97.	2.1	72
63	FERNS AND FIRES: EXPERIMENTAL CHARRING OF FERNS COMPARED TO WOOD AND IMPLICATIONS FOR PALEOBIOLOGY, PALEOECOLOGY, COAL PETROLOGY, AND ISOTOPE GEOCHEMISTRY. Palaios, 2007, 22, 528-538.	1.3	76
64	Increased terrestrial methane cycling at the Palaeocene–Eocene thermal maximum. Nature, 2007, 449, 332-335.	27.8	87
65	Observations and experiments on the origin and formation of inertinite group macerals. International Journal of Coal Geology, 2007, 70, 53-66.	5.0	251
66	A fossil lycopsid forest succession in the classic Joggins section of Nova Scotia: Paleoecology of a disturbance-prone Pennsylvanian wetland. , 2006, , .		22
67	The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10861-10865.	7.1	340
68	Silicified egg clusters from a Middle Cambrian Burgess Shale–type deposit, Guizhou, south China. Geology, 2006, 34, 1037.	4.4	9
69	Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. Journal of the Geological Society, 2005, 162, 591-602.	2.1	72
70	An early Carboniferous (Mississippian), Tournaisian, megaspore assemblage from Three Mile Plains, Nova Scotia, Canada. Review of Palaeobotany and Palynology, 2005, 134, 219-236.	1.5	9
71	Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology, 2005, 33, 589.	4.4	123
72	Evaluating phenanthrene sorption on various wood chars. Water Research, 2005, 39, 549-558.	11.3	104

#	Article	IF	Citations
73	Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. Journal of the Geological Society, 2004, 161, 401-410.	2.1	74
74	Fireball passes and nothing burnsâ€"The role of thermal radiation in the Cretaceous-Tertiary event: Evidence from the charcoal record of North America: Comment and Reply. Geology, 2004, 32, e50-e51.	4.4	4
75	Fireball passes and nothing burns—The role of thermal radiation in the Cretaceous-Tertiary event: Evidence from the charcoal record of North America. Geology, 2003, 31, 1061.	4.4	81
76	Non-destructive multiple approaches to interpret the preservation of plant fossils: implications for calcium-rich permineralizations. Journal of the Geological Society, 2003, 160, 857-862.	2.1	35
77	Chemosystematic and microstructural investigations on Carboniferous seed plant cuticles from four North American localities. Review of Palaeobotany and Palynology, 2002, 120, 41-52.	1.5	13
78	Coal petrology and the origin of coal macerals: a way ahead?. International Journal of Coal Geology, 2002, 50, 119-134.	5.0	212
79	Federico Cesi and his field studies on the origin of fossils between 1610 and 1630. Endeavour, 2001, 25, 93-103.	0.4	6
80	Metalliferous coals of the Westphalian A Joggins Formation, Cumberland Basin, Nova Scotia, Canada: petrology, geochemistry, and palynology. International Journal of Coal Geology, 2000, 42, 185-206.	5.0	35
81	Ultrastructure and affinity of Lower Carboniferous megaspores from the Moscow Basin, Russia. Review of Palaeobotany and Palynology, 2000, 109, 1-31.	1.5	20
82	The taphonomy of charcoal following a recent heathland fire and some implications for the interpretation of fossil charcoal deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164, 1-31.	2.3	152
83	Experiments in waterlogging and sedimentology of charcoal: results and implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164, 43-56.	2.3	140
84	Fire across the K–T boundary: initial results from the Sugarite Coal, New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164, 381-395.	2.3	31
85	The Pre-Quaternary history of fire. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164, 281-329.	2.3	533
86	Upland ecology of some Late Carboniferous cordaitalean trees from Nova Scotia and England. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 156, 225-242.	2.3	88
87	The distribution of megaspores from the upper carboniferous (Namurian a) coalâ€bearing sequence of Dalquhandy, Douglas coalfield, Lanarkshire, Scotland. Palynology, 1999, 23, 3-14.	1.5	1
88	Observations of Heterogeneity in Large Pulverized Coal Particles. Energy & Energy & 1999, 13, 592-601.	5.1	11
89	Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical composition of modern and fossil examples. Organic Geochemistry, 1998, 29, 1369-1380.	1.8	84
90	Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: implications for the origin of kerogen. Journal of the Geological Society, 1998, 155, 453-462.	2.1	73

#	Article	IF	CITATIONS
91	The legacy of Charles Lyell: advances in our knowledge of coal and coal-bearing strata. Geological Society Special Publication, 1998, 143, 243-260. EKMANN, J. M., SMOUSE, S. M., WINSLOW, J. C., RAMEZAN, M. & HARDING, N. S. (ed. MORRISON, G. F.) 1996.	1.3	16
92	Cofiring of Coal and Waste. IEA Coal Research Report Series, IEACR/90. 68 pp. London: IEA Coal Research. Price £300.00 (non-member countries), £100.00 (IEACR member countries), £50.00 (educational establishments within member countries); paperback, ISBN 92 9029 274 1. SLOSS, L. L.	1.5	0
93	SMITH J. M. & ADAMS, D. M. B. 1996. Pulverized Coal Ash – Requirements for Utilisation, IFA Coal Blomass Burning and Global Change? (1). NATO ASI Series! Clobal Environmental Change, Volume 51. xii + 489 pp. Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong: Springer-Verlag. Price DM 248.00, Ös 1810.40, SFr 216.00, £102.00, US \$197.00 (hard covers). ISBN 3540624341. Geological Magazine, 1998, 13	1.5 35,	0
94	JONES, T. (eds SMITH, I. M. & COUCH, G. R.) 1996. Air Pollution Control for Coal-fired Power Stations in Eastern Europe. IEA Coal Research Perspectives Series, IEAPER/24. 53 pp. London: IEA Coal Research. Price £255.00 (non-member countries), £85.00 (IEACR member countries), £42.50 (educational establishments) 1	[j E[‡]r Qq0 0	0 ogBT /Over
95	Perspectives Series, IEAPER/32. 49 pp. London: IEA Coal Research. Price £255.00 (non-member countries), £85.00 (IEACR member countries), £42.50 (educational establishments within member countries); paperback. ISBN 92 9029 281 4. DAVIDSON, R. M. 1996. Chlorine and Other Halogens in Coal. IEA Coal		

#	Article	IF	CITATIONS
109	Paleoecology of the Springfield Coal Member (Desmoinesian, Illinois Basin) near the Leslie Cemetery paleochannel, southwestern Indiana. International Journal of Coal Geology, 1995, 27, 59-98.	5.0	26
110	The oil-generating potential of plants from coal and coal-bearing strata through time: a review with new evidence from Carboniferous plants. Geological Society Special Publication, 1994, 77, 31-70.	1.3	48
111	Coal and coal-bearing strata as oil-prone source rocks: current problems and future directions. Geological Society Special Publication, 1994, 77, 201-205.	1.3	11
112	Coal and coal-bearing strata as oil-prone source rocks: an overview. Geological Society Special Publication, 1994, 77, 1-8.	1.3	23
113	Introduction to the petrology and infrared spectra of Shanxi coals, People's Republic of China. Fuel, 1994, 73, 1322-1330.	6.4	13
114	Geology on stamps: Dinomania. Geology Today, 1994, 10, 28-31.	0.9	0
115	Carboniferous fossil forests. Geology Today, 1994, 10, 213-217.	0.9	12
116	The nature and influence of fire in Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106, 91-112.	2.3	223
117	The chemical composition of Upper Carboniferous pteridosperm cuticles. Organic Geochemistry, 1994, 21, 107-112.	1.8	41
118	Controls upon the ultrastructural preservation of sporinite. Fuel, 1993, 72, 1145-1149.	6.4	7
119	The coal geology of China. Geology Today, 1993, 9, 14-18.	0.9	2
120	Investigations of "fusain transition fossils―from the Lower Carboniferous: comparisons with modern partially charred wood. International Journal of Coal Geology, 1993, 22, 37-59.	5.0	57
121	The Composition of Sporopollenin and its use in Living and Fossil Plant Systematics. Grana, 1993, 32, 2-11.	0.8	66
122	Arborescent gymnosperms from the Viséan of East Kirkton, West Lothian, Scotland. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 1993, 84, 261-266.	0.3	21
123	Carbon-13 Solid-state Nuclear Magnetic Resonance of Sporopollenins from Modern and Fossil Plants. Annals of Botany, 1992, 69, 545-549.	2.9	47
124	Stamnostoma oliveri, a gymnosperm with systems of ovulate cupules from the Lower Carboniferous (Dinantian) floras at Oxroad Bay, East Lothian, Scotland. Review of Palaeobotany and Palynology, 1992, 72, 273-284.	1.5	12
125	Trace Fossils of Plant-Arthropod Interactions. Short Courses in Paleontology, 1992, 5, 197-223.	0.2	17
126	The characterization of fossil and modern sporopollenins using 13-C solid state nuclear magnetic resonance. The Paleontological Society Special Publications, 1992, 6, 126-126.	0.0	0

#	Article	IF	CITATIONS
127	The geological history of insect-related plant damage. Terra Nova, 1992, 4, 542-552.	2.1	31
128	A comparison of new microscopical techniques for the study of fossil spore wall ultrastructure. Review of Palaeobotany and Palynology, 1991, 67, 133-139.	1.5	30
129	Ultrastructure and relationships of upper carboniferous spores from Thorpe Brickworks, West Yorkshire, U.K Review of Palaeobotany and Palynology, 1991, 69, 337-351.	1.5	15
130	Biomarker characterisation of an oil and its possible source rock from offshore Korea Bay Basin. Applied Geochemistry, 1991, 6, 143-157.	3.0	15
131	<i>Stanwoodia</i> , a new genus of probable early gymnosperms from the Dinantian of East Kirkton, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1991, 82, 113-123.	0.7	21
132	Geology on stamps: mountains of fire. Geology Today, 1991, 7, 28-29.	0.9	0
133	Evidence for plant-arthropod interactions in the fossil record. Geology Today, 1991, 7, 58-61.	0.9	17
134	Geology on stamps: 150 years of dinosaurs. Geology Today, 1991, 7, 187-189.	0.9	1
135	Fossil charcoal: a plantâ€fossil record preserved by fire. Geology Today, 1991, 7, 214-216.	0.9	70
136	A reappraisal of the Dinantian floras at Oxroad Bay, East Lothian, Scotland. 2. Volcanicity, palaeoenvironments and palaeoecology. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81, 161-194.	0.7	40
137	On Eristophyton and othergymnosperms from the Lower Carboniferous of Castelton Bay, East Lothian, Scotland. Geobios, 1990, 23, 5-19.	1.4	33
138	Preservation, evolution, and extinction of plants in Lower Carboniferous volcanic sequences in Scotland. Special Paper of the Geological Society of America, 1990, , 25-38.	0.5	24
139	Deltaic coals: an ecological and palaeobotanical perspective. Geological Society Special Publication, 1989, 41, 309-316.	1.3	7
140	Observations on the nature and origin of fusain. International Journal of Coal Geology, 1989, 12, 443-475.	5.0	361
141	A new Lower Carboniferous flora from East Lothian, Scotland. Proceedings of the Geologists Association, 1988, 99, 141-151.	1.1	10
142	The sedimentology, palaeoecology and preservation of the Lower Carboniferous plant deposits at Pettycur, Fife, Scotland. Geological Magazine, 1987, 124, 43-66.	1.5	45
143	Implications of vegetational change through the geological record on models for coal-forming environments. Geological Society Special Publication, 1987, 32, 67-85.	1.3	29
144	Coal and coal-bearing strata: recent advances and future prospects. Geological Society Special Publication, 1987, 32, 1-6.	1.3	14

#	Article	IF	CITATIONS
145	Coal and coal-bearing strata: problems and perspectives. Journal of the Geological Society, 1987, 144, 421-422.	2.1	1
146	Studies on a new lower carboniferous flora from kingswood near pettycur, Scotland. I. Preliminary report. Review of Palaeobotany and Palynology, 1986, 48, 161-180.	1.5	33
147	A Partially Permineralized Lepidophloios from the Early Upper Carboniferous of Scotland. Annals of Botany, 1986, 58, 617-626.	2.9	2
148	Geology on stamps: All that glitters. Geology Today, 1986, 2, 91-92.	0.9	0
149	Distribution and ecology of early ferns. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1985, 86, 141-149.	0.2	8
150	Diversification of early ferns. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1985, 86, 289-301.	0.2	14
151	A new late Tournaisian (lower carboniferous) flora from the Kilpatrick Hills, Scotland. Review of Palaeobotany and Palynology, 1985, 44, 81-99.	1.5	34
152	Early Triassic megaspores from the Rewan Group, Bowen Basin, Queensland. Alcheringa, 1985, 9, 297-323.	1.2	18
153	Plants from the Dinantian of Foulden, Berwickshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1985, 76, 13-20.	0.7	26
154	Palaeozoic, Mesozoic and contemporaneous megaspores from the Tertiary of southern England: indicators of sedimentary provenance and ancient vegetation. Journal of the Geological Society, 1985, 142, 375-395.	2.1	34
155	The early history of life on land*. Journal of Biological Education, 1984, 18, 207-219.	1.5	4
156	Techniques for the study of plant/arthropod interactions in the fossil record. Geobios, 1984, 17, 449-457.	1.4	20
157	Distribution of anatomically-preserved floras in the Lower Carboniferous in Western Europe. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1984, 75, 311-340.	0.7	108
158	Plant/animal interactions during the upper carboniferous. Botanical Review, The, 1983, 49, 259-307.	3.9	195
159	Interactions of Plants and Animals during the Carboniferous. BioScience, 1983, 33, 488.	4.9	49
160	Coprolites within marattiaceous fern stems (Psaronius magnificus) from the upper Pennsylvanian of the Appalachian Basin, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 1983, 41, 227-232.	2.3	36
161	Megaspores and coal facies: An example from the Westphalian A of Leicestershire, England. Review of Palaeobotany and Palynology, 1981, 34, 107-113.	1.5	27
162	A note on the occurrence of marine animal remains in a Lancashire coal ball (Westphalian A). Geological Magazine, 1981, 118, 307-308.	1.5	6

#	Article	IF	CITATIONS
163	SEDIMENTOLOGICAL AND ECOLOGICAL CONTROL OF WESTPHALIAN B PLANT ASSEMBLAGES FROM WEST YORKSHIRE. Proceedings of the Yorkshire Geological Society, 1978, 41, 461-508.	0.3	120
164	The earliest conifer. Nature, 1974, 251, 707-708.	27.8	57