
Rodrigo Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3352165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxide Semiconductor Thinâ€Film Transistors: A Review of Recent Advances. Advanced Materials, 2012, 24, 2945-2986.	21.0	2,590
2	Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature. Advanced Materials, 2005, 17, 590-594.	21.0	787
3	Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 2004, 85, 2541-2543.	3.3	500
4	Effect of different dopant elements on the properties of ZnO thin films. Vacuum, 2002, 64, 281-285.	3.5	336
5	Recent advances in ZnO transparent thin film transistors. Thin Solid Films, 2005, 487, 205-211.	1.8	335
6	Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature. Thin Solid Films, 2003, 427, 401-405.	1.8	277
7	Transparent p-type SnOx thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing. Applied Physics Letters, 2010, 97, .	3.3	264
8	High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper. IEEE Electron Device Letters, 2008, 29, 988-990.	3.9	245
9	Toward High-Performance Amorphous GIZO TFTs. Journal of the Electrochemical Society, 2009, 156, H161.	2.9	235
10	Complementary Metal Oxide Semiconductor Technology With and On Paper. Advanced Materials, 2011, 23, 4491-4496.	21.0	235
11	Laserâ€Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Advanced Functional Materials, 2018, 28, 1805271.	14.9	228
12	Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Applied Surface Science, 2008, 254, 3949-3954.	6.1	226
13	Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors. Nanotechnology, 2014, 25, 094008.	2.6	218
14	Gate-bias stress in amorphous oxide semiconductors thin-film transistors. Applied Physics Letters, 2009, 95, .	3.3	213
15	High mobility indium free amorphous oxide thin film transistors. Applied Physics Letters, 2008, 92, .	3.3	210
16	Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1749-1752.	3.1	196
17	A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 2014, 25, 094006.	2.6	193
18	Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors. Journal of Applied Physics, 2007, 101, 044505.	2.5	192

#	Article	IF	CITATIONS
19	Gallium–Indium–Zinc-Oxide-Based Thin-Film Transistors: Influence of the Source/Drain Material. IEEE Transactions on Electron Devices, 2008, 55, 954-960.	3.0	185
20	Influence of the post-treatment on the properties of ZnO thin films. Thin Solid Films, 2001, 383, 277-280.	1.8	182
21	Zinc oxide as an ozone sensor. Journal of Applied Physics, 2004, 96, 1398-1408.	2.5	181
22	Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs. Physica Status Solidi - Rapid Research Letters, 2007, 1, R34-R36.	2.4	171
23	Fully Solution-Processed Low-Voltage Aqueous In ₂ O ₃ Thin-Film Transistors Using an Ultrathin ZrO _{<i>x</i>} Dielectric. ACS Applied Materials & Interfaces, 2014, 6, 17364-17369.	8.0	166
24	Lowâ€Temperature, Nontoxic Waterâ€Induced Metalâ€Oxide Thin Films and Their Application in Thinâ€Film Transistors. Advanced Functional Materials, 2015, 25, 2564-2572.	14.9	161
25	Thin-film transistors based on p-type Cu2O thin films produced at room temperature. Applied Physics Letters, 2010, 96, .	3.3	160
26	TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Solar Energy Materials and Solar Cells, 2015, 132, 549-556.	6.2	155
27	Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications. Solar Energy Materials and Solar Cells, 2008, 92, 1605-1610.	6.2	151
28	Zinc oxide, a multifunctional material: from material to device applications. Applied Physics A: Materials Science and Processing, 2009, 96, 197-205.	2.3	149
29	Waterâ€Induced Scandium Oxide Dielectric for Lowâ€Operating Voltage n―and pâ€Type Metalâ€Oxide Thinâ€ Transistors. Advanced Functional Materials, 2015, 25, 7180-7188.	Film 14.9	147
30	Multifunctional cellulose-paper for light harvesting and smart sensing applications. Journal of Materials Chemistry C, 2018, 6, 3143-3181.	5.5	147
31	Solution Combustion Synthesis: Lowâ€Temperature Processing for pâ€Type Cu:NiO Thin Films for Transparent Electronics. Advanced Materials, 2017, 29, 1701599.	21.0	145
32	WO ₃ Nanoparticle-Based Conformable pH Sensor. ACS Applied Materials & Interfaces, 2014, 6, 12226-12234.	8.0	140
33	Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films. Thin Solid Films, 2007, 515, 8562-8566.	1.8	139
34	Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosensors and Bioelectronics, 2019, 124-125, 167-175.	10.1	135
35	Role of Ga2O3–In2O3–ZnO channel composition on the electrical performance of thin-film transistors. Materials Chemistry and Physics, 2011, 131, 512-518.	4.0	134
36	Gold on paper–paper platform for Au-nanoprobe TB detection. Lab on A Chip, 2012, 12, 4802.	6.0	129

#	Article	IF	CITATIONS
37	Write-erase and read paper memory transistor. Applied Physics Letters, 2008, 93, .	3.3	127
38	High field-effect mobility zinc oxide thin film transistors produced at room temperature. Journal of Non-Crystalline Solids, 2004, 338-340, 806-809.	3.1	124
39	Recyclable, Flexible, Lowâ€Power Oxide Electronics. Advanced Functional Materials, 2013, 23, 2153-2161.	14.9	124
40	Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters, 2016, 108, .	3.3	122
41	Synthesis of Long ZnO Nanorods under Microwave Irradiation or Conventional Heating. Journal of Physical Chemistry C, 2014, 118, 14629-14639.	3.1	120
42	Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering. Vacuum, 2002, 64, 293-297.	3.5	117
43	Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chemistry - A European Journal, 2020, 26, 9099-9125.	3.3	115
44	Laser-Induced Graphene from Paper for Mechanical Sensing. ACS Applied Materials & Interfaces, 2021, 13, 10210-10221.	8.0	115
45	Transport in high mobility amorphous wide band gap indium zinc oxide films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, R95-R97.	1.8	113
46	Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Solar Energy Materials and Solar Cells, 2014, 120, 109-115.	6.2	111
47	A Review on Cu ₂ O and Cu ^I -Based <i>p</i> -Type Semiconducting Transparent Oxide Materials: Promising Candidates for New Generation Oxide Based Electronics. Reviews in Advanced Sciences and Engineering, 2013, 2, 273-304.	0.6	107
48	Aqueous Combustion Synthesis of Aluminum Oxide Thin Films and Application as Gate Dielectric in GZTO Solution-Based TFTs. ACS Applied Materials & Interfaces, 2014, 6, 19592-19599.	8.0	107
49	Effect of solvents on ZnO nanostructures synthesized by solvothermal method assisted by microwave radiation: a photocatalytic study. Journal of Materials Science, 2015, 50, 5777-5787.	3.7	105
50	Amorphous ITO thin films prepared by DC sputtering for electrochromic applications. Thin Solid Films, 2002, 420-421, 70-75.	1.8	103
51	High quality conductive gallium-doped zinc oxide films deposited at room temperature. Thin Solid Films, 2004, 451-452, 443-447.	1.8	103
52	Imaging the Anomalous Charge Distribution Inside CsPbBr ₃ Perovskite Quantum Dots Sensitized Solar Cells. ACS Nano, 2017, 11, 10214-10221.	14.6	103
53	The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs. Electrochemical and Solid-State Letters, 2008, 11, H248.	2.2	101
54	Thin Film Silicon Photovoltaic Cells on Paper for Flexible Indoor Applications. Advanced Functional Materials, 2015, 25, 3592-3598.	14.9	101

#	Article	IF	CITATIONS
55	Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy, 2019, 59, 91-101.	16.0	100
56	Recent Progress in Solutionâ€Based Metal Oxide Resistive Switching Devices. Advanced Materials, 2021, 33, e2004328.	21.0	99
57	High-performance fully amorphous bilayer metal-oxide thin film transistors using ultra-thin solution-processed ZrOx dielectric. Applied Physics Letters, 2014, 105, 113509.	3.3	98
58	Growth of ZnO:Ga thin films at room temperature on polymeric substrates: thickness dependence. Thin Solid Films, 2003, 442, 121-126.	1.8	97
59	Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Scientific Reports, 2013, 3, 1469.	3.3	97
60	Transparent aluminium zinc oxide thin films with enhanced thermoelectric properties. Journal of Materials Chemistry A, 2014, 2, 6649-6655.	10.3	97
61	Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films, 2007, 515, 8450-8454.	1.8	95
62	New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering. Thin Solid Films, 2003, 442, 102-106.	1.8	92
63	Electronics with and on paper. Physica Status Solidi - Rapid Research Letters, 2011, 5, 332-335.	2.4	91
64	Reusable Celluloseâ€Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyteâ€Gated Transistors. Advanced Functional Materials, 2017, 27, 1606755.	14.9	90
65	Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide. Journal of Non-Crystalline Solids, 2006, 352, 1756-1760.	3.1	89
66	Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering. Vacuum, 1995, 46, 673-680.	3.5	87
67	Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings. Thin Solid Films, 2006, 511-512, 295-298.	1.8	87
68	Low-temperature, nontoxic water-induced high-k zirconium oxide dielectrics for low-voltage, high-performance oxide thin-film transistors. Journal of Materials Chemistry C, 2016, 4, 10715-10721.	5.5	87
69	Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Scientific Reports, 2017, 7, 2480.	3.3	86
70	Electron transport and optical characteristics in amorphous indium zinc oxide films. Journal of Non-Crystalline Solids, 2006, 352, 1471-1474.	3.1	83
71	Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors. Journal of Applied Physics, 2010, 108, .	2.5	83
72	Microwave Synthesized ZnO Nanorod Arrays for UV Sensors: A Seed Layer Annealing Temperature Study. Materials, 2016, 9, 299.	2.9	83

#	Article	IF	CITATIONS
73	Production and characterization of zinc oxide thin films for room temperature ozone sensing. Thin Solid Films, 2002, 418, 45-50.	1.8	82
74	High-mobility p-type NiO _x thin-film transistors processed at low temperatures with Al ₂ O ₃ high-k dielectric. Journal of Materials Chemistry C, 2016, 4, 9438-9444.	5.5	82
75	High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications. Solar Energy Materials and Solar Cells, 2009, 93, 92-97.	6.2	80
76	Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nature Communications, 2022, 13, 814.	12.8	80
77	High mobility and low threshold voltage transparent thin film transistors based on amorphous indium zinc oxide semiconductors. Solid-State Electronics, 2008, 52, 443-448.	1.4	79
78	Efficient coverage of ZnO nanoparticles on cotton fibres for antibacterial finishing using a rapid and low cost <i>in situ</i> synthesis. New Journal of Chemistry, 2018, 42, 1052-1060.	2.8	78
79	A Sustainable Approach to Flexible Electronics with Zincâ€Tin Oxide Thinâ€Film Transistors. Advanced Electronic Materials, 2018, 4, 1800032.	5.1	76
80	Effect of Mg doping on Cu 2 O thin films and their behavior on the TiO 2 /Cu 2 O heterojunction solar cells. Solar Energy Materials and Solar Cells, 2016, 147, 27-36.	6.2	73
81	Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Applied Surface Science, 2013, 282, 590-594.	6.1	71
82	Synthesis of WO 3 nanoparticles for biosensing applications. Sensors and Actuators B: Chemical, 2016, 223, 186-194.	7.8	71
83	Performance and Stability of Low Temperature Transparent Thin-Film Transistors Using Amorphous Multicomponent Dielectrics. Journal of the Electrochemical Society, 2009, 156, H824.	2.9	70
84	Zinc concentration dependence study of solution processed amorphous indium gallium zinc oxide thin film transistors using high-k dielectric. Applied Physics Letters, 2010, 97, .	3.3	70
85	In situ one-step synthesis of p-type copper oxide for low-temperature, solution-processed thin-film transistors. Journal of Materials Chemistry C, 2017, 5, 2524-2530.	5.5	70
86	Large-area 1D thin-film position-sensitive detector with high detection resolution. Sensors and Actuators A: Physical, 1995, 51, 135-142.	4.1	68
87	Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique. Solar Energy Materials and Solar Cells, 2010, 94, 406-412.	6.2	68
88	Papertronics: Multigate paper transistor for multifunction applications. Applied Materials Today, 2018, 12, 402-414.	4.3	68
89	Transparent, conductive ZnO:Al thin film deposited on polymer substrates by RF magnetron sputtering. Surface and Coatings Technology, 2002, 151-152, 247-251.	4.8	67
90	Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2143-2148.	1.8	67

#	Article	IF	CITATIONS
91	P-type ZnO thin film deposited by spray pyrolysis technique: The effect of solution concentration. Thin Solid Films, 2009, 518, 1149-1152.	1.8	67
92	Zinc oxide thin films: Characterization and potential applications. Thin Solid Films, 2010, 518, 4515-4519.	1.8	66
93	Redox Chloride Elimination Reaction: Facile Solution Route for Indiumâ€Free, Lowâ€Voltage, and Highâ€Performance Transistors. Advanced Electronic Materials, 2017, 3, 1600513.	5.1	66
94	Silicon thin film solar cells on commercial tiles. Energy and Environmental Science, 2011, 4, 4620.	30.8	65
95	Eco-friendly water-induced aluminum oxide dielectrics and their application in a hybrid metal oxide/polymer TFT. RSC Advances, 2015, 5, 86606-86613.	3.6	65
96	Ultra-Fast Microwave Synthesis of ZnO Nanorods on Cellulose Substrates for UV Sensor Applications. Materials, 2017, 10, 1308.	2.9	65
97	Lateral photoeffect in large area oneâ€dimensional thinâ€film positionâ€sensitive detectors based in aâ€Si:H Pâ€lâ€N devices. Review of Scientific Instruments, 1995, 66, 2927-2934.	1.3	64
98	Mapping the Electrical Properties of ZnOâ€Based Transparent Conductive Oxides Grown at Room Temperature and Improved by Controlled Postdeposition Annealing. Advanced Electronic Materials, 2016, 2, 1500287.	5.1	64
99	Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering. Thin Solid Films, 2005, 487, 271-276.	1.8	63
100	Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO ₃ Nanowires through Microstructuration. ACS Applied Materials & Interfaces, 2020, 12, 18421-18430.	8.0	63
101	Thin film position sensitive detector based on amorphous silicon p–i–n diode. Review of Scientific Instruments, 1994, 65, 3784-3786.	1.3	62
102	Microstructure control of dual-phase inkjet-printed a-WO3/TiO2/WOX films for high-performance electrochromic applications. Journal of Materials Chemistry, 2012, 22, 13268.	6.7	62
103	Nontoxic, Ecoâ€friendly Fully Waterâ€Induced Ternary Zr–Gd–O Dielectric for Highâ€Performance Transistors and Unipolar Inverters. Advanced Electronic Materials, 2018, 4, 1800100.	5.1	62
104	UV-Mediated Photochemical Treatment for Low-Temperature Oxide-Based Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 31100-31108.	8.0	61
105	Influence of the annealing conditions on the properties of ZnO thin films. Solid State Sciences, 2001, 3, 1125-1128.	0.7	60
106	Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. Optics Express, 2014, 22, A1059.	3.4	60
107	Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells. Nano Energy, 2016, 26, 286-296.	16.0	60
108	Inkjet printed and "doctor blade―TiO2 photodetectors for DNA biosensors. Biosensors and Bioelectronics, 2010, 25, 1229-1234.	10.1	59

#	Article	IF	CITATIONS
109	Green economy and waste management: An inevitable plan for materials science. Progress in Natural Science: Materials International, 2022, 32, 1-9.	4.4	59
110	High k dielectrics for low temperature electronics. Thin Solid Films, 2008, 516, 1544-1548.	1.8	58
111	The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology, 2014, 25, 094007.	2.6	58
112	Improving positive and negative bias illumination stress stability in parylene passivated IGZO transistors. Applied Physics Letters, 2016, 109, .	3.3	58
113	Photocatalytic TiO2 Nanorod Spheres and Arrays Compatible with Flexible Applications. Catalysts, 2017, 7, 60.	3.5	58
114	Aluminum doped zinc oxide sputtering targets obtained from nanostructured powders: Processing and application. Journal of the European Ceramic Society, 2012, 32, 4381-4391.	5.7	57
115	Label-Free Nanosensing Platform for Breast Cancer Exosome Profiling. ACS Sensors, 2019, 4, 2073-2083.	7.8	57
116	Printed, Highly Stable Metal Oxide Thinâ€Film Transistors with Ultraâ€Thin Highâ€Ք Oxide Dielectric. Advanced Electronic Materials, 2020, 6, 1901071.	5.1	57
117	New developments in gallium doped zinc oxide deposited on polymeric substrates by RF magnetron sputtering. Surface and Coatings Technology, 2004, 180-181, 20-25.	4.8	56
118	Piezoresistive Eâ€6kin Sensors Produced with Laser Engraved Molds. Advanced Electronic Materials, 2018, 4, 1800182.	5.1	56
119	Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Applied Materials & Interfaces, 2021, 13, 3576-3590.	8.0	56
120	Cellulose: A Contribution for the Zero eâ \in Waste Challenge. Advanced Materials Technologies, 2021, 6, .	5.8	56
121	Highly Sensitive ZnO Ozone Detectors at Room Temperature. Japanese Journal of Applied Physics, 2003, 42, L435-L437.	1.5	55
122	Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature. Vacuum, 2008, 82, 1507-1511.	3.5	55
123	Structure and Morphologic Influence of WO ₃ Nanoparticles on the Electrochromic Performance of Dualâ€Phase <i>a</i> â€WO ₃ /WO ₃ Inkjet Printed Films. Advanced Electronic Materials, 2015, 1, 1400002.	5.1	55
124	Highly efficient nanoplasmonic SERS on cardboard packaging substrates. Nanotechnology, 2014, 25, 415202.	2.6	54
125	Nanostructured silicon and its application to solar cells, position sensors and thin film transistors. Philosophical Magazine, 2009, 89, 2699-2721.	1.6	53
126	Solution-processed high-k magnesium oxide dielectrics for low-voltage oxide thin-film transistors. Applied Physics Letters, 2016, 109, .	3.3	53

#	Article	IF	CITATIONS
127	Boosting Electrical Performance of High-κ Nanomultilayer Dielectrics and Electronic Devices by Combining Solution Combustion Synthesis and UV Irradiation. ACS Applied Materials & Interfaces, 2017, 9, 40428-40437.	8.0	53
128	Laserâ€Induced Graphene Piezoresistive Sensors Synthesized Directly on Cork Insoles for Gait Analysis. Advanced Materials Technologies, 2020, 5, 2000630.	5.8	53
129	Simulation of hydrogenated amorphous and microcrystalline silicon optoelectronic devices. Mathematics and Computers in Simulation, 1999, 49, 381-401.	4.4	52
130	High Mobility a-IGO Films Produced at Room Temperature and Their Application in TFTs. Electrochemical and Solid-State Letters, 2010, 13, H20.	2.2	52
131	Low-temperature processed Schottky-gated field-effect transistors based on amorphous gallium-indium-zinc-oxide thin films. Applied Physics Letters, 2010, 97, .	3.3	52
132	Where science fiction meets reality? With oxide semiconductors!. Physica Status Solidi - Rapid Research Letters, 2011, 5, 336-339.	2.4	52
133	Syngas production by electrochemical CO 2 reduction in an ionic liquid based-electrolyte. Journal of CO2 Utilization, 2017, 18, 62-72.	6.8	52
134	Influence of the oxygen/argon ratio on the properties of sputtered hafnium oxide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 210-213.	3.5	51
135	Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids. Nanotechnology, 2015, 26, 135202.	2.6	51
136	Light trapping in solar cells: simple design rules to maximize absorption. Optica, 2020, 7, 1377.	9.3	51
137	Polycrystalline intrinsic zinc oxide to be used in transparent electronic devices. Thin Solid Films, 2005, 487, 212-215.	1.8	50
138	Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer. Advanced Materials Interfaces, 2018, 5, 1701101.	3.7	50
139	Influence of the deposition conditions on the gas sensitivity of zinc oxide thin films deposited by spray pyrolysis. Solid State Sciences, 2001, 3, 1129-1131.	0.7	49
140	Fully solution-induced high performance indium oxide thin film transistors with ZrO _x high-k gate dielectrics. RSC Advances, 2018, 8, 16788-16799.	3.6	49
141	Fieldâ€Effect Transistors on Photonic Cellulose Nanocrystal Solid Electrolyte for Circular Polarized Light Sensing. Advanced Functional Materials, 2019, 29, 1805279.	14.9	48
142	Laserâ€Induced Graphene on Paper toward Efficient Fabrication of Flexible, Planar Electrodes for Electrochemical Sensing. Advanced Materials Interfaces, 2021, 8, 2101502.	3.7	48
143	A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Current Applied Physics, 2015, 15, S75-S81.	2.4	47
144	Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing. Journal of Physical Chemistry C, 2016, 120, 18235-18242.	3.1	47

#	Article	IF	CITATIONS
145	Digital Microfluidics for Nucleic Acid Amplification. Sensors, 2017, 17, 1495.	3.8	47
146	Self-Rechargeable Paper Thin-Film Batteries: Performance and Applications. Journal of Display Technology, 2010, 6, 332-335.	1.2	46
147	Towards environmental friendly solution-based ZTO/AlO _{<i>x</i>} TFTs. Semiconductor Science and Technology, 2015, 30, 024007.	2.0	46
148	Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2, 014001.	2.7	46
149	Tailoring IGZO Composition for Enhanced Fully Solution-Based Thin Film Transistors. Nanomaterials, 2019, 9, 1273.	4.1	46
150	Hydrogenated silicon carbon nitride films obtained by HWCVD, PA-HWCVD and PECVD techniques. Journal of Non-Crystalline Solids, 2006, 352, 1361-1366.	3.1	45
151	Eco-friendly, solution-processed In-W-O thin films and their applications in low-voltage, high-performance transistors. Journal of Materials Chemistry C, 2016, 4, 4478-4484.	5.5	45
152	Solutionâ€Processed Alkaline Lithium Oxide Dielectrics for Applications in n―and pâ€Type Thinâ€Film Transistors. Advanced Electronic Materials, 2016, 2, 1600140.	5.1	45
153	Biowaste-derived carbon black applied to polyaniline-based high-performance supercapacitor microelectrodes: Sustainable materials for renewable energy applications. Electrochimica Acta, 2019, 316, 202-218.	5.2	45
154	Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates. Vacuum, 2002, 64, 233-236.	3.5	44
155	Role of order and disorder in covalent semiconductors and ionic oxides used to produce thin film transistors. Applied Physics A: Materials Science and Processing, 2007, 89, 37-42.	2.3	44
156	Crystallization of amorphous indium zinc oxide thin films produced by radio-frequency magnetron sputtering. Thin Solid Films, 2008, 516, 1374-1376.	1.8	44
157	Selective floating gate nonâ€volatile paper memory transistor. Physica Status Solidi - Rapid Research Letters, 2009, 3, 308-310.	2.4	43
158	Lowâ€ŧemperature sputtered mixtures of highâ€₽̂ and high bandgap dielectrics for GIZO TFTs. Journal of the Society for Information Display, 2010, 18, 762-772.	2.1	43
159	Laser-Induced Graphene-Based Platforms for Dual Biorecognition of Molecules. ACS Applied Nano Materials, 2020, 3, 2795-2803.	5.0	43
160	Metal Oxide-Based Photocatalytic Paper: A Green Alternative for Environmental Remediation. Catalysts, 2021, 11, 504.	3.5	43
161	Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes. Applied Physics Letters, 2007, 90, 023903.	3.3	42
162	Bio-microfluidic platform for gold nanoprobe based DNA detection—application to Mycobacterium tuberculosis. Biosensors and Bioelectronics, 2013, 48, 87-93.	10.1	42

#	Article	IF	CITATIONS
163	Efficient Field Emission from Vertically Aligned Cu ₂ O _{1â€<i>δ</i>} (111) Nanostructure Influenced by Oxygen Vacancy. Advanced Functional Materials, 2015, 25, 947-956.	14.9	42
164	Toward Stable Solution-Processed High-Mobility p <i>-</i> Type Thin Film Transistors Based on Halide Perovskites. ACS Nano, 2020, 14, 14790-14797.	14.6	42
165	Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1900-1903.	3.1	41
166	Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices. Nanoscale, 2015, 7, 1696-1708.	5.6	41
167	Radiationâ€Tolerant Flexible Largeâ€Area Electronics Based on Oxide Semiconductors. Advanced Electronic Materials, 2016, 2, 1500489.	5.1	41
168	Colloidal-lithographed TiO ₂ photonic nanostructures for solar cell light trapping. Journal of Materials Chemistry C, 2017, 5, 6852-6861.	5.5	41
169	Optimum Luminescent Down-Shifting Properties for High Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2, 2930-2938.	5.1	41
170	High UV and Sunlight Photocatalytic Performance of Porous ZnO Nanostructures Synthesized by a Facile and Fast Microwave Hydrothermal Method. Materials, 2021, 14, 2385.	2.9	41
171	3D ZnO/Ag Surface-Enhanced Raman Scattering on Disposable and Flexible Cardboard Platforms. Materials, 2017, 10, 1351.	2.9	40
172	Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS Omega, 2021, 6, 29268-29290.	3.5	40
173	The characterisation of aerosol assisted CVD conducting, photocatalytic indium doped zinc oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219, 10-15.	3.9	39
174	Cu ₂ O polyhedral nanowires produced by microwave irradiation. Journal of Materials Chemistry C, 2014, 2, 6097.	5.5	39
175	Electrodeposition of polypyrrole on aluminium in aqueous tartaric solution. Electrochimica Acta, 2006, 51, 5802-5810.	5.2	38
176	Thin and flexible bio-batteries made of electrospun cellulose-based membranes. Biosensors and Bioelectronics, 2011, 26, 2742-2745.	10.1	38
177	Memristors Using Solution-Based IGZO Nanoparticles. ACS Omega, 2017, 2, 8366-8372.	3.5	38
178	Paper-Based SERS Platform for One-Step Screening of Tetracycline in Milk. Scientific Reports, 2019, 9, 17922.	3.3	38
179	Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosensors and Bioelectronics, 2011, 26, 2012-2017.	10.1	37
180	Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosensors and Bioelectronics, 2014, 52, 50-55.	10.1	37

#	Article	IF	CITATIONS
181	Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flexible and Printed Electronics, 2018, 3, 044002.	2.7	37
182	Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 89-93.	3.5	36
183	UV and ozone influence on the conductivity of ZnO thin films. Journal of Non-Crystalline Solids, 2006, 352, 1444-1447.	3.1	36
184	Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time. Thin Solid Films, 2009, 518, 1279-1282.	1.8	36
185	Visualization of nanocrystalline CuO in the grain boundaries of Cu2O thin films and effect on band bending and film resistivity. APL Materials, 2018, 6, .	5.1	36
186	Spray deposited molybdenum doped indium oxide thin films with high near infrared transparency and carrier mobility. Applied Physics Letters, 2009, 94, 212101.	3.3	35
187	Solid-state paper batteries for controlling paper transistors. Electrochimica Acta, 2011, 56, 1099-1105.	5.2	35
188	Solvothermal Synthesis of Gallium–Indium-Zinc-Oxide Nanoparticles for Electrolyte-Gated Transistors. ACS Applied Materials & Interfaces, 2015, 7, 638-646.	8.0	35
189	Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture. IScience, 2018, 3, 238-254.	4.1	35
190	Transduction Mechanisms, Micro-Structuring Techniques, and Applications of Electronic Skin Pressure Sensors: A Review of Recent Advances. Sensors, 2020, 20, 4407.	3.8	35
191	Nobleâ€Metalâ€Free Memristive Devices Based on IGZO for Neuromorphic Applications. Advanced Electronic Materials, 2020, 6, 2000242.	5.1	35
192	Polycrystalline silicon obtained by metal induced crystallization using different metals. Thin Solid Films, 2004, 451-452, 334-339.	1.8	34
193	Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers. Journal of Non-Crystalline Solids, 2006, 352, 1972-1975.	3.1	34
194	p-Type <formula formulatype="inline"><tex Notation="TeX">\${hbox{Cu}}_{x}{hbox{O}}\$ </tex </formula> Thin-Film Transistors Produced by Thermal Oxidation. Journal of Display Technology, 2013, 9, 735-740.	1.2	34
195	Analog Circuits With High-Gain Topologies Using a-GIZO TFTs on Glass. Journal of Display Technology, 2015, 11, 547-553.	1.2	34
196	Influence of Channel Length Scaling on InGaZnO TFTs Characteristics: Unity Current-Gain Cutoff Frequency, Intrinsic Voltage-Gain, and On-Resistance. Journal of Display Technology, 2016, 12, 515-518.	1.2	34
197	A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection. Sensors, 2017, 17, 2616.	3.8	34
198	Design of wave-optical structured substrates for ultra-thin perovskite solar cells. Applied Materials Today, 2020, 20, 100720.	4.3	34

#	Article	IF	CITATIONS
199	Flexible a-Si:H Position-Sensitive Detectors. Proceedings of the IEEE, 2005, 93, 1281-1286.	21.3	33
200	Fully Printed Zinc Oxide Electrolyte-Gated Transistors on Paper. Nanomaterials, 2019, 9, 169.	4.1	33
201	Influence of the intrinsic layer characteristics on a-Si:H p–i–n solar cell performance analysed by means of a computer simulation. Solar Energy Materials and Solar Cells, 2002, 73, 151-162.	6.2	32
202	The role of source and drain material in the performance of GIZO based thinâ€film transistors. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1905-1909.	1.8	32
203	Synthesis, design, and morphology of metal oxide nanostructures. , 2019, , 21-57.		32
204	Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure. Vacuum, 2009, 83, 1253-1256.	3.5	31
205	Study and Characterization of a Novel Polymer Electrolyte Based on Agar Doped with Magnesium Triflate. Molecular Crystals and Liquid Crystals, 2013, 570, 1-11.	0.9	31
206	Flexible and Transparent WO ₃ Transistor with Electrical and Optical Modulation. Advanced Electronic Materials, 2015, 1, 1500030.	5.1	31
207	High-Gain Transimpedance Amplifier for Flexible Radiation Dosimetry Using InGaZnO TFTs. IEEE Journal of the Electron Devices Society, 2018, 6, 760-765.	2.1	31
208	Influence of the process parameters on structural and electrical properties of r.f. magnetron sputtering ITO films. Thin Solid Films, 2001, 383, 244-247.	1.8	30
209	Influence of substrate temperature on N-doped ZnO films deposited by RF magnetron sputtering. Thin Solid Films, 2007, 515, 8785-8788.	1.8	30
210	Role of Room Temperature Sputtered High Conductive and High Transparent Indium Zinc Oxide Film Contacts on the Performance of Orange, Green, and Blue Organic Light Emitting Diodes. Plasma Processes and Polymers, 2011, 8, 340-345.	3.0	30
211	Passive radiofrequency x-ray dosimeter tag based on flexible radiation-sensitive oxide field-effect transistor. Science Advances, 2018, 4, eaat1825.	10.3	30
212	Influence of time, light and temperature on the electrical properties of zinc oxide TFTs. Superlattices and Microstructures, 2006, 39, 319-327.	3.1	29
213	Study of nanostructured/amorphous silicon solar cell by impedance spectroscopy technique. Journal of Non-Crystalline Solids, 2006, 352, 1880-1883.	3.1	28
214	Optical and structural analysis of porous silicon coated with GZO films using rf magnetron sputtering. Thin Solid Films, 2007, 515, 8664-8669.	1.8	28
215	p-Type \${hbox{Cu}}_{x}{hbox{O}}\$ Films Deposited at Room Temperature for Thin-Film Transistors. Journal of Display Technology, 2012, 8, 41-47.	1.2	28
216	Solution based zinc tin oxide TFTs: the dual role of the organic solvent. Journal Physics D: Applied Physics, 2017, 50, 065106.	2.8	28

#	Article	IF	CITATIONS
217	Role of Structure and Composition on the Performances of P-Type Tin Oxide Thin-Film Transistors Processed at Low-Temperatures. Nanomaterials, 2019, 9, 320.	4.1	28
218	Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials, 2020, 10, 2027.	4.1	28
219	New insights on large area flexible position sensitive detectors. Journal of Non-Crystalline Solids, 2002, 299-302, 1272-1276.	3.1	27
220	Low temperature processed hafnium oxide: Structural and electrical properties. Materials Science in Semiconductor Processing, 2006, 9, 1125-1132.	4.0	27
221	Effect of annealing on the properties of N-doped ZnO films deposited by RF magnetron sputtering. Applied Surface Science, 2008, 254, 7178-7182.	6.1	27
222	Oxide semiconductors: Order within the disorder. Philosophical Magazine, 2009, 89, 2741-2758.	1.6	27
223	Sintering Behavior of Nano―and Micro‣ized <scp><scp>ZnO</scp></scp> Powder Targets for rf Magnetron Sputtering Applications. Journal of the American Ceramic Society, 2012, 95, 204-210.	3.8	27
224	Solar cells for self-sustainable intelligent packaging. Journal of Materials Chemistry A, 2015, 3, 13226-13236.	10.3	27
225	Paper-Based Platform with an In Situ Molecularly Imprinted Polymer for β-Amyloid. ACS Omega, 2020, 5, 12057-12066.	3.5	27
226	Tunneling in vertical μcî—,Si/aî—,SixCyOz:H/μcî—,Si heterostructures. Journal of Non-Crystalline Solids, 1989, 1 120-122.	15, 3.1	26
227	Influence of the reactive N2 gas flow on the properties of rf-sputtered ZnO thin films. Thin Solid Films, 2007, 515, 8780-8784.	1.8	26
228	The effects of ZnO coating on the photoluminescence properties of porous silicon for the advanced optoelectronic devices. Journal of Non-Crystalline Solids, 2008, 354, 2181-2185.	3.1	26
229	RF sputtered wide work function indium molybdenum oxide thin films for solar cell applications. Solar Energy, 2009, 83, 726-731.	6.1	26
230	Influence of postâ€deposition annealing on electrical and optical properties of ZnOâ€based TCOs deposited at room temperature. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2317-2328.	1.8	26
231	Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. Journal of Analytical and Applied Pyrolysis, 2017, 127, 299-308.	5.5	26
232	Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cells. Solar Energy, 2018, 174, 786-792.	6.1	26
233	Sol–Gel Processed p-Type CuAlO ₂ Semiconductor Thin Films and the Integration in Transistors. IEEE Transactions on Electron Devices, 2019, 66, 1458-1463.	3.0	26
234	Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. Journal of Materials Chemistry C, 2019, 7, 6456-6464.	5.5	26

#	Article	IF	CITATIONS
235	E-Skin Bimodal Sensors for Robotics and Prosthesis Using PDMS Molds Engraved by Laser. Sensors, 2019, 19, 899.	3.8	26
236	Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL Materials, 2022, 10, .	5.1	26
237	Contact Effects in Amorphous InGaZnO Thin Film Transistors. Journal of Display Technology, 2014, 10, 956-961.	1.2	25
238	Planar Dualâ€Gate Paper/Oxide Field Effect Transistors as Universal Logic Gates. Advanced Electronic Materials, 2018, 4, 1800423.	5.1	25
239	Shape Effect of Zinc-Tin Oxide Nanostructures on Photodegradation of Methylene Blue and Rhodamine B under UV and Visible Light. ACS Applied Nano Materials, 2021, 4, 1149-1161.	5.0	25
240	Electron transport in single and multicomponent n-type oxide semiconductors. Thin Solid Films, 2008, 516, 1322-1325.	1.8	24
241	Fabrication and characterization of hybrid solar cells based on copper phthalocyanine/porous silicon. Journal of Non-Crystalline Solids, 2008, 354, 2892-2896.	3.1	24
242	Environmental, Optical, and Electrical Stability Study of Solution-Processed Zinc–Tin–Oxide Thin-Film Transistors. Journal of Display Technology, 2011, 7, 640-643.	1.2	24
243	Current transport mechanism at metal–semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillars. Nanoscale, 2013, 5, 11699.	5.6	24
244	Statistical Mixture Design and Multivariate Analysis of Inkjet Printed <i>a</i> -WO ₃ /TiO ₂ /WO _{<i>X</i>} Electrochromic Films. ACS Combinatorial Science, 2014, 16, 5-16.	3.8	24
245	A compact model and direct parameters extraction techniques For amorphous gallium-indium-zinc-oxide thin film transistors. Solid-State Electronics, 2016, 126, 81-86.	1.4	24
246	Solid State Electrochemical WO ₃ Transistors with High Current Modulation. Advanced Electronic Materials, 2016, 2, 1500414.	5.1	24
247	Handwritten Oxide Electronics on Paper. Advanced Materials Technologies, 2017, 2, 1700009.	5.8	24
248	Mapping the space charge carrier dynamics in plasmon-based perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 19811-19819.	10.3	24
249	Hybrid (Ag)ZnO/Cs/PMMA nanocomposite thin films. Journal of Alloys and Compounds, 2019, 803, 922-933.	5.5	24
250	Tailoring Upconversion and Morphology of Yb/Eu Doped Y2O3 Nanostructures by Acid Composition Mediation. Nanomaterials, 2019, 9, 234.	4.1	24
251	Dark currentâ€voltage characteristics of transverse asymmetric hydrogenated amorphous silicon diodes. Journal of Applied Physics, 1995, 78, 3481-3487.	2.5	23
252	Influence of the Strain on the Electrical Resistance of Zinc Oxide Doped Thin Film Deposited on Polymer Substrates. Advanced Engineering Materials, 2002, 4, 610-612.	3.5	23

#	Article	IF	CITATIONS
253	High mobility and visible–near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis. Thin Solid Films, 2012, 524, 268-271.	1.8	23
254	Nanostructured p-type Cr/V ₂ O ₅ thin films with boosted thermoelectric properties. Journal of Materials Chemistry A, 2014, 2, 6456-6462.	10.3	23
255	One-step synthesis of ZnO decorated CNT buckypaper composites and their optical and electrical properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 195, 38-44.	3.5	23
256	Bias Stress and Temperature Impact on InGaZnO TFTs and Circuits. Materials, 2017, 10, 680.	2.9	23
257	Tuning the Electrical Properties of Cellulose Nanocrystals through Laser-Induced Graphitization for UV Photodetectors. ACS Applied Nano Materials, 2021, 4, 8262-8272.	5.0	23
258	New UV-enhanced solar blind optical sensors based on monocrystalline zinc sulphide. Sensors and Actuators A: Physical, 1998, 67, 68-71.	4.1	22
259	Large area image sensing structures based on a-SiC:H: a dynamic characterization. Sensors and Actuators A: Physical, 2004, 113, 360-364.	4.1	22
260	Polycrystalline silicon obtained by gold metal induced crystallization. Journal of Non-Crystalline Solids, 2004, 338-340, 178-182.	3.1	22
261	High near-infrared transparency and carrier mobility of Mo doped In2O3 thin films for optoelectronics applications. Journal of Applied Physics, 2009, 106, .	2.5	22
262	Room-Temperature Cosputtered HfO[sub 2]–Al[sub 2]O[sub 3] Multicomponent Gate Dielectrics. Electrochemical and Solid-State Letters, 2009, 12, G65.	2.2	22
263	Gelatin _{<i>n</i>} Zn(CF ₃ SO ₃) ₂ Polymer Electrolytes for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.	2.9	22
264	Comparative study of transparent rectifying contacts on semiconducting oxide single crystals and amorphous thin films. Journal of Applied Physics, 2013, 113, .	2.5	22
265	Transparent Current Mirrors With a-GIZO TFTs: Neural Modeling, Simulation and Fabrication. Journal of Display Technology, 2013, 9, 1001-1006.	1.2	22
266	Seed-Layer Free Zinc Tin Oxide Tailored Nanostructures for Nanoelectronic Applications: Effect of Chemical Parameters. ACS Applied Nano Materials, 2018, 1, 3986-3997.	5.0	22
267	Multi-Level Cell Properties of a Bilayer Cu2O/Al2O3 Resistive Switching Device. Nanomaterials, 2019, 9, 289.	4.1	22
268	Laser induced ultrafast combustion synthesis of solution-based AlO _x for thin film transistors. Journal of Materials Chemistry C, 2020, 8, 6176-6184.	5.5	22
269	A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell. Journal Physics D: Applied Physics, 1996, 29, 3154-3159.	2.8	21
270	Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHz. Thin Solid Films, 2005, 487, 170-173.	1.8	21

#	Article	IF	CITATIONS
271	High-mobility molybdenum doped indium oxide thin films prepared by spray pyrolysis technique. Materials Letters, 2008, 62, 3217-3219.	2.6	21
272	Real-time monitoring of PCR amplification of proto-oncogene c-MYC using a Ta2O5 electrolyte–insulator–semiconductor sensor. Biosensors and Bioelectronics, 2011, 28, 44-49.	10.1	21
273	Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing. Journal of the European Ceramic Society, 2014, 34, 2325-2338.	5.7	21
274	Interpreting anomalies observed in oxide semiconductor TFTs under negative and positive bias stress. AIP Advances, 2016, 6, .	1.3	21
275	A path to renewable Mg reduction from MgO by a continuous-wave Cr:Nd:YAG ceramic solar laser. Solar Energy Materials and Solar Cells, 2016, 155, 430-435.	6.2	21
276	Oxide-Based Solar Cell: Impact of Layer Thicknesses on the Device Performance. ACS Combinatorial Science, 2017, 19, 113-120.	3.8	21
277	Multifunctional microfluidic chip for optical nanoprobe based RNA detection – application to Chronic Myeloid Leukemia. Scientific Reports, 2018, 8, 381.	3.3	21
278	Critical role of a double-layer configuration in solution-based unipolar resistive switching memories. Nanotechnology, 2018, 29, 345206.	2.6	21
279	TiO2 Nanostructured Films for Electrochromic Paper Based-Devices. Applied Sciences (Switzerland), 2020, 10, 1200.	2.5	21
280	Colloidal Lithography for Photovoltaics: An Attractive Route for Light Management. Nanomaterials, 2021, 11, 1665.	4.1	21
281	Characterization of silicon carbide thin films prepared by VHF-PECVD technology. Journal of Non-Crystalline Solids, 2004, 338-340, 530-533.	3.1	20
282	Stress Induced Mechano-electrical Writing-Reading of Polymer Film Powered by Contact Electrification Mechanism. Scientific Reports, 2016, 6, 19514.	3.3	20
283	Highly conductive grain boundaries in copper oxide thin films. Journal of Applied Physics, 2016, 119, .	2.5	20
284	InGaZnO TFT behavioral model for IC design. Analog Integrated Circuits and Signal Processing, 2016, 87, 73-80.	1.4	20
285	Oxide TFT Rectifiers on Flexible Substrates Operating at NFC Frequency Range. IEEE Journal of the Electron Devices Society, 2019, 7, 329-334.	2.1	20
286	Ultrafast Low-Temperature Crystallization of Solar Cell Graded Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskites Using a Reproducible Microwave-Based Process. ACS Applied Energy Materials, 2019, 2, 1844-1853.	5.1	20
287	Preparation and characterization of cellulose nanocomposite hydrogels as functional electrolytes. Solid State Ionics, 2013, 242, 26-32.	2.7	19
288	Low-Voltage High-Stability InZnO Thin-Film Transistor Using Ultra-Thin Solution-Processed ZrO\$_{x} Dielectric. Journal of Display Technology, 2015, 11, 541-546.	1.2	19

#	Article	IF	CITATIONS
289	Design and Simple Assembly of Gold Nanostar Bioconjugates for Surface-Enhanced Raman Spectroscopy Immunoassays. Nanomaterials, 2019, 9, 1561.	4.1	19
290	Human-motion interactive energy harvester based on polyaniline functionalized textile fibers following metal/polymer mechano-responsive charge transfer mechanism. Nano Energy, 2019, 60, 794-801.	16.0	19
291	Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers. Sensors, 2020, 20, 1624.	3.8	19
292	Selfâ€Cleaned Photonicâ€Enhanced Solar Cells with Nanostructured Paryleneâ€C. Advanced Materials Interfaces, 2020, 7, 2000264.	3.7	19
293	Fast and Low-Cost Synthesis of MoS2 Nanostructures on Paper Substrates for Near-Infrared Photodetectors. Applied Sciences (Switzerland), 2021, 11, 1234.	2.5	19
294	Sputtered multicomponent amorphous dielectrics for transparent electronics. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2149-2154.	1.8	18
295	Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films. Plasmonics, 2014, 9, 1015-1023.	3.4	18
296	Growth Mechanism of Seed-Layer Free ZnSnO3 Nanowires: Effect of Physical Parameters. Nanomaterials, 2019, 9, 1002.	4.1	18
297	All-Thin-Film Perovskite/C–Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimization. ACS Applied Energy Materials, 2019, 2, 3979-3985.	5.1	18
298	Paper-Based Nanoplatforms for Multifunctional Applications. Journal of Nanomaterials, 2019, 2019, 1-16.	2.7	18
299	Reusable and highly sensitive SERS immunoassay utilizing gold nanostars and a cellulose hydrogel-based platform. Journal of Materials Chemistry B, 2021, 9, 7516-7529.	5.8	18
300	Role of the gas temperature and power to gas flow ratio on powder and voids formation in films grown by PECVD technique. Vacuum, 2000, 56, 25-30.	3.5	17
301	Flexible large area thin film position sensitive detectors. Sensors and Actuators A: Physical, 2000, 86, 182-186.	4.1	17
302	Effect of different dopants on the properties of ZnO thin films. Solid State Sciences, 2001, 3, 1211-1213.	0.7	17
303	Silicon thin films prepared in the transition region and their use in solar cells. Solar Energy Materials and Solar Cells, 2006, 90, 3001-3008.	6.2	17
304	Electronic structure of amorphous ZnO films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1476-1480.	0.8	17
305	Optoelectronic Devices from Bacterial NanoCellulose. , 2016, , 179-197.		17
306	Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cells. Solar Energy, 2020, 196, 92-98.	6.1	17

#	Article	IF	CITATIONS
307	Rail-to-Rail Timing Signals Generation Using InGaZnO TFTs For Flexible X-Ray Detector. IEEE Journal of the Electron Devices Society, 2020, 8, 157-162.	2.1	17
308	Design and synthesis of low temperature printed metal oxide memristors. Journal of Materials Chemistry C, 2021, 9, 3911-3918.	5.5	17
309	Silicon carbide alloys produced by hot wire, hot wire plasma-assisted and plasma-enhanced CVD techniques. Applied Surface Science, 2001, 184, 8-19.	6.1	16
310	a-Si:H interface optimisation for thin film position sensitive detectors produced on polymeric substrates. Journal of Non-Crystalline Solids, 2002, 299-302, 1289-1294.	3.1	16
311	Optimisation of parameters for aqueous tape-casting of cordierite-based glass ceramics by Taguchi method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 334, 11-18.	5.6	16
312	The diphasic nc-Si/a-Si:H thin film with improved medium-range order. Journal of Non-Crystalline Solids, 2004, 338-340, 188-191.	3.1	16
313	Linearity and sensitivity of MIS position sensitive detectors. Journal of Materials Science, 2005, 40, 1377-1381.	3.7	16
314	Investigation of O7+ swift heavy ion irradiation on molybdenum doped indium oxide thin films. Radiation Physics and Chemistry, 2012, 81, 589-593.	2.8	16
315	Extended-Gate ISFETs Based on Sputtered Amorphous Oxides. Journal of Display Technology, 2013, 9, 729-734.	1.2	16
316	Observation of Space Charge Dynamics Inside an All Oxide Based Solar Cell. ACS Nano, 2016, 10, 6139-6146.	14.6	16
317	Sustainable Fully Printed UV Sensors on Cork Using Zinc Oxide/Ethylcellulose Inks. Micromachines, 2019, 10, 601.	2.9	16
318	Touchâ€Interactive Flexible Sustainable Energy Harvester and Selfâ€Powered Smart Card. Advanced Functional Materials, 2020, 30, 1908994.	14.9	16
319	Ionic Conductive Cellulose Mats by Solution Blow Spinning as Substrate and a Dielectric Interstrate Layer for Flexible Electronics. ACS Applied Materials & Interfaces, 2021, 13, 26237-26246.	8.0	16
320	Polymer light-emitting diodes with amorphous indium-zinc oxide anodes deposited at room temperature. Synthetic Metals, 2009, 159, 1112-1115.	3.9	15
321	Study of electrochromic devices with nanocomposites polymethacrylate hydroxyethylene resin based electrolyte. Polymers for Advanced Technologies, 2012, 23, 791-795.	3.2	15
322	Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formation. Thin Solid Films, 2015, 591, 25-31.	1.8	15
323	High performance electronic devices based on nanofibers <i>via</i> a crosslinking welding process. Nanoscale, 2018, 10, 19427-19434.	5.6	15
324	Colloidal-structured metallic micro-grids: High performance transparent electrodes in the red and infrared range. Solar Energy Materials and Solar Cells, 2019, 197, 7-12.	6.2	15

#	Article	IF	CITATIONS
325	2D Resistive Switching Based on Amorphous Zinc–Tin Oxide Schottky Diodes. Advanced Electronic Materials, 2020, 6, 1900958.	5.1	15
326	High-performance wide bandgap perovskite solar cells fabricated in ambient high-humidity conditions. Materials Advances, 2021, 2, 6344-6355.	5.4	15
327	Emergent solution based IGZO memristor towards neuromorphic applications. Journal of Materials Chemistry C, 2022, 10, 1991-1998.	5.5	15
328	Transport in μc-Six:Cy:Oz:H films prepared by a TCDDC system. Journal of Non-Crystalline Solids, 1989, 114, 486-488.	3.1	14
329	Engineering of plasma deposition systems used for producing large area a-Si:H devices. Journal of Non-Crystalline Solids, 1991, 137-138, 757-760.	3.1	14
330	A new high ultraviolet sensitivity FTO-GaP Schottky photodiode fabricated by spray pyrolysis. Semiconductor Science and Technology, 1998, 13, 102-107.	2.0	14
331	Production and characterization of large area flexible thin film position sensitive detectors. Thin Solid Films, 2001, 383, 310-313.	1.8	14
332	Thin film position sensitive detectors based on pin amorphous silicon carbide structures. Applied Surface Science, 2001, 184, 443-447.	6.1	14
333	Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors. Thin Solid Films, 2005, 487, 102-106.	1.8	14
334	Some studies on highly transparent wide band gap indium molybdenum oxide thin films rf sputtered at room temperature. Thin Solid Films, 2008, 516, 1359-1364.	1.8	14
335	Thin-Film Transistors Based on Indium Molybdenum Oxide Semiconductor Layers Sputtered at Room Temperature. IEEE Electron Device Letters, 2011, 32, 1391-1393.	3.9	14
336	Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length. RSC Advances, 2014, 4, 56013-56025.	3.6	14
337	Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers. Optical Materials, 2015, 39, 278-281.	3.6	14
338	Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process. ACS Applied Materials & Interfaces, 2018, 10, 18057-18065.	8.0	14
339	Enhanced electrical and photocatalytic properties of porous TiO2 thin films decorated with Fe2O3 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 20753-20773.	2.2	14
340	ZnO nanostructures grown on ITO coated glass substrate by hybrid microwave-assisted hydrothermal method. Optik, 2020, 208, 164372.	2.9	14
341	Transparent and Flexible Electrocorticography Electrode Arrays Based on Silver Nanowire Networks for Neural Recordings. ACS Applied Nano Materials, 2021, 4, 5737-5747.	5.0	14
342	Healable Cellulose Iontronic Hydrogel Stickers for Sustainable Electronics on Paper. Advanced Electronic Materials, 2021, 7, 2001166.	5.1	14

#	Article	IF	CITATIONS
343	Effects of U.V. light on the transport properties of a-Si : H films during their growth. Journal of Non-Crystalline Solids, 1987, 97-98, 1399-1402.	3.1	13
344	High-detection resolution presented by large-area thin-film position-sensitive detectors. , 1995, 2397, 259.		13
345	Wide Band Gap Microcrystalline Silicon Thin Films. Solid State Phenomena, 1995, 44-46, 299-346.	0.3	13
346	Polymorphous Silicon Films Deposited at 27.12 MHz. Chemical Vapor Deposition, 2003, 9, 333-337.	1.3	13
347	Amorphous silicon position sensitive detectors applied to micropositioning. Journal of Non-Crystalline Solids, 2006, 352, 1792-1796.	3.1	13
348	Nanostructure characterization of high k materials by spectroscopic ellipsometry. Applied Surface Science, 2006, 253, 339-343.	6.1	13
349	Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior. Microscopy and Microanalysis, 2015, 21, 108-119.	0.4	13
350	A statistics modeling approach for the optimization of thin film photovoltaic devices. Solar Energy, 2017, 144, 232-243.	6.1	13
351	Draw Spinning of Waferâ€Scale Oxide Fibers for Electronic Devices. Advanced Electronic Materials, 2018, 4, 1700644.	5.1	13
352	Ionically Modified Cellulose Nanocrystal Self-Assembled Films with a Mesoporous Twisted Superstructure: Polarizability and Application in Ion-Gated Transistors. ACS Applied Electronic Materials, 2020, 2, 426-436.	4.3	13
353	Enhanced Fe-TiO2 Solar Photocatalysts on Porous Platforms for Water Purification. Nanomaterials, 2022, 12, 1005.	4.1	13
354	Influence of the deposition conditions on the properties of titanium oxide produced by r.f. magnetron sputtering. Materials Science in Semiconductor Processing, 2004, 7, 243-247.	4.0	12
355	Porous a/nc-Si:H films produced by HW-CVD as ethanol vapour detector and primary fuel cell. Sensors and Actuators B: Chemical, 2004, 103, 344-349.	7.8	12
356	Study of nanostructured silicon by hydrogen evolution and its application in p–i–n solar cells. Journal of Non-Crystalline Solids, 2006, 352, 1945-1948.	3.1	12
357	Preliminary studies on molybdenum-doped indium oxide thin films deposited by radio-frequency magnetron sputtering at room temperature. Thin Solid Films, 2007, 515, 5512-5518.	1.8	12
358	Effect of Li ³⁺ heavy ion irradiation on the Mo doped In ₂ O ₃ thin films prepared by spray pyrolysis technique. Journal Physics D: Applied Physics, 2011, 44, 085404.	2.8	12
359	P-type oxide-based thin film transistors produced at low temperatures. , 2012, , .		12
360	Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3. Science and Technology of Advanced Materials, 2012, 13, 045004.	6.1	12

#	Article	IF	CITATIONS
361	InGaZnO Thin-Film-Transistor-Based Four-Quadrant High-Gain Analog Multiplier on Glass. IEEE Electron Device Letters, 2016, 37, 419-421.	3.9	12
362	Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform. Biosensors and Bioelectronics, 2017, 91, 788-795.	10.1	12
363	Solution Combustion Synthesis of Transparent Conducting Thin Films for Sustainable Photovoltaic Applications. Sustainability, 2020, 12, 10423.	3.2	12
364	Industrial Waste Residue Converted into Value-Added ZnO for Optoelectronic Applications. ACS Applied Electronic Materials, 2020, 2, 1960-1969.	4.3	12
365	Ultrafast Microwave Synthesis of WO ₃ Nanostructured Films for Solar Photocatalysis. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100196.	2.4	12
366	A thin SiO layer as a remedy for the indium reduction at the In2O3/μc-Si:C:H interface. Applied Surface Science, 1991, 52, 339-342.	6.1	11
367	New materials for large-area position-sensitive detectors. Sensors and Actuators A: Physical, 1998, 68, 244-248.	4.1	11
368	Role of the deposition conditions on the properties presented by nanocrystallite silicon films produced by hot wire. Journal of Non-Crystalline Solids, 1998, 227-230, 901-905.	3.1	11
369	Microcrystalline thin metal oxide films for optoelectronic applications. Journal of Non-Crystalline Solids, 1998, 227-230, 1092-1095.	3.1	11
370	Structural characterisation of NiTi thin film shape memory alloys. Sensors and Actuators A: Physical, 2002, 99, 55-58.	4.1	11
371	Morphology and structure of nanocrystalline p-doped silicon films produced by hot wire technique. Vacuum, 2002, 64, 237-243.	3.5	11
372	Surface modification of a new flexible substrate based on hydroxypropylcellulose for optoelectronic applications. Thin Solid Films, 2003, 442, 127-131.	1.8	11
373	Role of the thickness on the electrical and optical performances of undoped polycrystalline zinc oxide films used as UV detectors. Journal of Non-Crystalline Solids, 2006, 352, 1448-1452.	3.1	11
374	Spectroscopic ellipsometry study of Coâ€doped TiO ₂ films. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 880-883.	1.8	11
375	Structural and optical properties of nitrogen doped ZnO films. Vacuum, 2009, 83, 1274-1278.	3.5	11
376	Basic analog circuits with a-GIZO thin-film transistors: Modeling and simulation. , 2012, , .		11
377	Amorphous Silicon Position Sensitive Detector Array for Fast 3-D Object Profiling. IEEE Sensors Journal, 2012, 12, 812-820.	4.7	11
378	Modulations in effective work function of platinum gate electrode in metal-oxide-semiconductor devices. Thin Solid Films, 2012, 520, 4556-4558.	1.8	11

#	Article	IF	CITATIONS
379	a-GIZO TFT neural modeling, circuit simulation and validation. Solid-State Electronics, 2015, 105, 30-36.	1.4	11
380	"Electroâ€Typing―on a Carbonâ€Nanoparticlesâ€Filled Polymeric Film using Conducting Atomic Force Microscopy. Advanced Materials, 2017, 29, 1703079.	21.0	11
381	Low-Voltage High-Speed Ring Oscillator With a-InGaZnO TFTs. IEEE Journal of the Electron Devices Society, 2020, 8, 584-588.	2.1	11
382	Thin Film Position Sensitive Detectors: From 1D to 3D Applications. Springer Series in Materials Science, 2000, , 342-403.	0.6	11
383	Influence of paper surface characteristics on fully inkjet printed PEDOT:PSS-based electrochemical transistors. Semiconductor Science and Technology, 2021, 36, 125005.	2.0	11
384	Flexible nanostructured TiO2-based gas and UV sensors: a review. Discover Materials, 2022, 2, .	2.8	11
385	A-Si:H ambipolar diffusion length and effective lifetime measured by flying spot (FST) and spectral photovoltage (SPT) techniques. Journal of Non-Crystalline Solids, 1991, 137-138, 479-482.	3.1	10
386	32 linear array position sensitive detector based on NIP and hetero a-Si:H microdevices. Journal of Non-Crystalline Solids, 2002, 299-302, 1283-1288.	3.1	10
387	Composition and structure of silicon-carbide alloys obtained by hot wire and hot wire plasma assisted techniques. Vacuum, 2002, 64, 261-266.	3.5	10
388	Spectroscopic ellipsometry study of amorphous silicon anodically oxidised. Thin Solid Films, 2003, 427, 345-349.	1.8	10
389	Super linear position sensitive detectors using MIS structures. Optical Materials, 2005, 27, 1088-1092.	3.6	10
390	Metal induced crystallization: Gold versus aluminium. Journal of Materials Science, 2005, 40, 1387-1391.	3.7	10
391	Nickel-assisted metal-induced crystallization of silicon: Effect of native silicon oxide layer. Thin Solid Films, 2006, 511-512, 275-279.	1.8	10
392	Study of environmental degradation of silver surface. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1215-1218.	0.8	10
393	High-gain amplifier with n-type transistors. , 2013, , .		10
394	Operational stability of solution based zinc tin oxide/SiO ₂ thin film transistors under gate bias stress. APL Materials, 2015, 3, 062804.	5.1	10
395	Energy-dependent relaxation time in quaternary amorphous oxide semiconductors probed by gated Hall effect measurements. Physical Review B, 2017, 95, .	3.2	10
396	Boosting highly transparent and conducting indium zinc oxide thin films through solution combustion synthesis: influence of rapid thermal annealing. Semiconductor Science and Technology, 2018, 33, 105004.	2.0	10

#	Article	IF	CITATIONS
397	Optimization of ZnO Nanorods Concentration in a Micro-Structured Polymeric Composite for Nanogenerators. Chemosensors, 2021, 9, 27.	3.6	10
398	Handwritten and Sustainable Electronic Logic Circuits with Fully Printed Paper Transistors. Advanced Materials Technologies, 2021, 6, 2100633.	5.8	10
399	Smart IoT enabled interactive self-powered security tag designed with functionalized paper. Nano Energy, 2022, 95, 107021.	16.0	10
400	Characterization of the density of states of polymorphous silicon films produced at 13.56 and 27.12 MHz using CPM and SCLC techniques. Journal of Non-Crystalline Solids, 2004, 338-340, 206-210.	3.1	9
401	Room temperature dc and ac electrical behaviour of undoped ZnO films under UV light. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 118, 135-140.	3.5	9
402	Conditions to prepare PPy/Al2O3/Al used as a solid-state capacitor from aqueous malic solutions. Journal of Power Sources, 2006, 160, 1471-1479.	7.8	9
403	Electrical properties of amorphous and nanocrystalline hydrogenated silicon films obtained by impedance spectroscopy. Thin Solid Films, 2006, 511-512, 390-393.	1.8	9
404	Effect of base and oxygen partial pressures on the electrical and optical properties of indium molybdenum oxide thin films. Thin Solid Films, 2007, 515, 8549-8552.	1.8	9
405	Low temperature high k dielectric on poly-Si TFTs. Journal of Non-Crystalline Solids, 2008, 354, 2534-2537.	3.1	9
406	The electronic transport mechanism in indium molybdenum oxide thin films RF sputtered at room temperature. Europhysics Letters, 2012, 97, 36002.	2.0	9
407	Single nucleotide polymorphism detection using gold nanoprobes and bioâ€microfluidic platform with embedded microlenses. Biotechnology and Bioengineering, 2015, 112, 1210-1219.	3.3	9
408	Gravure printed sol–gel derived AlOOH hybrid nanocomposite thin films for printed electronics. Journal of Materials Chemistry C, 2015, 3, 1776-1786.	5.5	9
409	Optoelectronics and Bio Devices on Paper Powered by Solar Cells. , 0, , .		9
410	Materials as activator of future global science and technology challenges. Progress in Natural Science: Materials International, 2021, 31, 785-791.	4.4	9
411	Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker. Biosensors, 2022, 12, 201.	4.7	9
412	Tailoring the Interface in High Performance Planar Perovskite Solar Cell by ZnOS Thin Film. ACS Applied Energy Materials, 2022, 5, 5680-5690.	5.1	9
413	Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics, 2022, 9, 2408-2421.	6.6	9
414	On the a-Si:H film growth: the role of the powder formation. Journal of Non-Crystalline Solids, 1996, 198-200, 1207-1211.	3.1	8

#	Article	IF	CITATIONS
415	Interpretation of the static and dynamic characteristics of 1-D thin film position sensitive detectors based on a-Si:H p-i-n diodes. IEEE Transactions on Electron Devices, 1996, 43, 2143-2152.	3.0	8
416	Thin oxide interface layers in a-Si:H MIS structures. Journal of Non-Crystalline Solids, 1998, 227-230, 1230-1234.	3.1	8
417	Plasma diagnostics of a PECVD system using different R.F. electrode configurations. Vacuum, 2000, 56, 31-37.	3.5	8
418	Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films. Thin Solid Films, 2001, 383, 165-168.	1.8	8
419	Performance of a-Six:C1â^'x:H Schottky barrier and pin diodes used as position sensitive detectors. Journal of Non-Crystalline Solids, 2002, 299-302, 1277-1282.	3.1	8
420	High quality a-Si:H films for MIS device applications. Thin Solid Films, 2002, 403-404, 26-29.	1.8	8
421	Polymorphous silicon deposited in large area reactor at 13 and 27 MHz. Thin Solid Films, 2003, 427, 6-10.	1.8	8
422	Spectroscopic ellipsometry study of nickel induced crystallization of a-Si. Journal of Non-Crystalline Solids, 2006, 352, 1204-1208.	3.1	8
423	Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes. Sensors and Actuators B: Chemical, 2008, 132, 508-511.	7.8	8
424	Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector. Journal of Non-Crystalline Solids, 2008, 354, 2580-2584.	3.1	8
425	Micro Cantilever Movement Detection with an Amorphous Silicon Array of Position Sensitive Detectors. Sensors, 2010, 10, 8173-8184.	3.8	8
426	Plastic Compatible Sputtered \${hbox{Ta}}_{2}{hbox{O}}_{5}\$ Sensitive Layer for Oxide Semiconductor TFT Sensors. Journal of Display Technology, 2013, 9, 723-728.	1.2	8
427	Photocatalytic Activity of TiO2 Nanostructured Arrays Prepared by Microwave-Assisted Solvothermal Method. , 0, , .		8
428	Substrate reactivity as the origin of Fermi level pinning at the Cu ₂ O/ALD-Al ₂ O ₃ interface. Materials Research Express, 2016, 3, 046404.	1.6	8
429	Non-enzymatic lab-on-paper devices for biosensing applications. Comprehensive Analytical Chemistry, 2020, , 189-237.	1.3	8
430	Enhanced solar photocatalysis of TiO ₂ nanoparticles and nanostructured thin films grown on paper. Nano Express, 2021, 2, 040002.	2.4	8
431	UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. Chemosensors, 2021, 9, 192.	3.6	8
432	Role of the hot wire filament temperature on the structure and morphology of the nanocrystalline silicon p-doped films. Applied Surface Science, 1999, 144-145, 690-696.	6.1	7

#	Article	IF	CITATIONS
433	Correlation between the microscopic and macroscopic characteristics of SnO2 thin film gas sensors. Solid State Sciences, 2001, 3, 1349-1351.	0.7	7
434	Correlation between a-Si:H surface oxidation process and the performance of MIS structures. Thin Solid Films, 2001, 383, 185-188.	1.8	7
435	Mass spectroscopy analysis during the deposition of a-SiC:H and a-C:H films produced by hot wire and hot wire plasma-assisted techniques. Applied Surface Science, 2001, 184, 60-65.	6.1	7
436	Effect of annealing on molybdenum doped indium oxide thin films RF sputtered at room temperature. Vacuum, 2008, 82, 1489-1494.	3.5	7
437	n-PS/a-Si:H heterojunction for device application. Journal of Non-Crystalline Solids, 2008, 354, 2632-2636.	3.1	7
438	Co-doping of aluminium and gallium with nitrogen in ZnO films deposited by RF magnetron sputtering. Journal of Physics Condensed Matter, 2008, 20, 075220.	1.8	7
439	Selfâ€sustained nâ€type memory transistor devices based on natural cellulose paper fibers. Journal of Information Display, 2009, 10, 149-157.	4.0	7
440	Intrinsic <i>p</i> Type ZnO Films Deposited by rf Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2009, 9, 813-816.	0.9	7
441	Effects of O7+ swift heavy ion irradiation on indium oxide thin films. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 1836-1840.	1.4	7
442	High-gain topologies for transparent electronics. , 2013, , .		7
443	Engineered cellulose fibers as dielectric for oxide field effect transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 1421-1426.	0.8	7
444	Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering. Thin Solid Films, 2015, 594, 256-260.	1.8	7
445	Wave-optical front structures on silicon and perovskite thin-film solar cells. , 2020, , 315-354.		7
446	Cellulose-Based Solid Electrolyte Membranes Through Microwave Assisted Regeneration and Application in Electrochromic Displays. Frontiers in Materials, 2020, 7, .	2.4	7
447	Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electronic Materials, 2021, 2, 105-115.	1.9	7
448	Visible Photoluminescent Zinc Oxide Nanorods for Label-Free Nonenzymatic Glucose Detection. ACS Applied Nano Materials, 2022, 5, 4386-4396.	5.0	7
449	Amorphous silicon sensors: from photo to chemical detection. Journal of Non-Crystalline Solids, 1998, 227-230, 1349-1353.	3.1	6
450	New metallurgical systems for electronic soldering applications. Sensors and Actuators A: Physical, 1999, 74, 70-76.	4.1	6

#	Article	IF	CITATIONS
451	Fast and cheap method to qualitatively measure the thickness and uniformity of ZrO2 thin films. Materials Science in Semiconductor Processing, 2001, 4, 319-321.	4.0	6
452	Dependence of the Strains and Residual Mechanical Stresses on the Performances Presented by a-Si:H Thin Film Position Sensors. Advanced Engineering Materials, 2002, 4, 612-616.	3.5	6
453	ZnO:Ca Thin Films Produced by RF Sputtering at Room Temperature: Effect of the Power Density. Materials Science Forum, 2004, 455-456, 12-15.	0.3	6
454	Effect of the discharge frequency and impedance on the structural properties of polymorphous silicon. Thin Solid Films, 2004, 451-452, 264-268.	1.8	6
455	Flexible position sensitive photodetectors based on a-Si:H heterostructures. Sensors and Actuators A: Physical, 2004, 116, 119-124.	4.1	6
456	Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devices. Materials Science Forum, 2006, 514-516, 3-7.	0.3	6
457	Away from silicon era: the paper electronics. Proceedings of SPIE, 2011, , .	0.8	6
458	3D scanning characteristics of an amorphous silicon position sensitive detector array system. Optics Express, 2012, 20, 4583.	3.4	6
459	Strongly Photosensitive and Fluorescent F8T2 Electrospun Fibers. Macromolecular Materials and Engineering, 2013, 298, 174-180.	3.6	6
460	Performances of Microcrystalline Zinc Tin Oxide Thin-Film Transistors Processed by Spray Pyrolysis. Journal of Display Technology, 2013, 9, 825-831.	1.2	6
461	Role of a disperse carbon interlayer on the performances of tandem a-Si solar cells. Science and Technology of Advanced Materials, 2013, 14, 045009.	6.1	6
462	Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence. Micromachines, 2016, 7, 181.	2.9	6
463	Structural, optical, and electronic properties of metal oxide nanostructures. , 2019, , 59-102.		6
464	Soft-Microstructured Transparent Electrodes for Photonic-Enhanced Flexible Solar Cells. Micro, 2021, 1, 215-227.	2.0	6
465	Ta2O5/SiO2 Multicomponent Dielectrics for Amorphous Oxide TFTs. Electronic Materials, 2021, 2, 1-16.	1.9	6
466	Linear thin-film position-sensitive detector (LTFPSD) for 3D measurements. , 1995, , .		5
467	Static and dynamic resolution of 1D thin film position sensitive detector. Journal of Non-Crystalline Solids, 1996, 198-200, 1202-1206.	3.1	5
468	Photochemical sensors based on amorphous silicon thin films. Sensors and Actuators B: Chemical, 1998, 46, 202-207.	7.8	5

#	Article	IF	CITATIONS
469	Role of the gas temperature and power to gas flow ratio on powder formation and properties of films grown by the PECVD technique. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 272-277.	3.5	5
470	New nanostructured silicon films grown by PECVD technique under controlled powder formation conditions. Solar Energy, 2001, 69, 263-269.	6.1	5
471	Structural Characterisation of Zinc Oxide Thin Films Produced by Spray Pyrolysis. Key Engineering Materials, 2002, 230-232, 599-602.	0.4	5
472	From porous to compact films by changing the onset conditions of HW-CVD process. Thin Solid Films, 2003, 427, 225-230.	1.8	5
473	Amorphous silicon-based PINIP structure for color sensor. Thin Solid Films, 2005, 487, 268-270.	1.8	5
474	Influence of the layer thickness and hydrogen dilution on electrical properties of large area amorphous silicon p–i–n solar cell. Solar Energy Materials and Solar Cells, 2005, 87, 349-355.	6.2	5
475	Characterization of nanocrystalline silicon carbide films. Journal of Non-Crystalline Solids, 2006, 352, 1410-1415.	3.1	5
476	Zinc Oxide Thin Films used as an Ozone Sensor at Room Temperature. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	5
477	A Study on the Electrical Properties of ZnO Based Transparent TFTs. Materials Science Forum, 2006, 514-516, 68-72.	0.3	5
478	Effect of Oxidant/ Monomer Ratio on the Electrical Properties of Polypyrrole in Tantalum Capacitors. Materials Science Forum, 2006, 514-516, 43-47.	0.3	5
479	Role of Trimethylboron to Silane Ratio on the Properties of <i>p</i> -Type Nanocrystalline Silicon Thin Film Deposited by Radio Frequency Plasma Enhanced Chemical Vapour Deposition. Journal of Nanoscience and Nanotechnology, 2010, 10, 2547-2551.	0.9	5
480	The effect of dopants on the morphology, microstructure and electrical properties of transparent zinc oxide films prepared by the sol-gel method. Thin Solid Films, 2011, 520, 1174-1177.	1.8	5
481	Effect of substrate temperature on the properties of pyrolytically deposited nitrogen-doped zinc oxide thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178, 103-108.	3.5	5
482	Design of a robust general-purpose low-offset comparator based on IGZO thin-film transistors. , 2015,		5
483	Basic analog and digital circuits with a-IGZO TFTs. , 2016, , .		5
484	Light-induced current mapping in oxide based solar cells with nanoscale resolution. Solar Energy Materials and Solar Cells, 2018, 176, 310-317.	6.2	5
485	Control of Eu Oxidation State in Y2O3â^'xSx:Eu Thin-Film Phosphors Prepared by Atomic Layer Deposition: A Structural and Photoluminescence Study. Materials, 2020, 13, 93.	2.9	5
486	UV-Assisted Annealing Effect on the Performance of an Electrolyte-Gated Transistor Based on Inkjet Printed ZnO Nanoparticles Blended With Zinc Nitrate. IEEE Transactions on Electron Devices, 2022, 69, 1538-1544.	3.0	5

#	Article	IF	CITATIONS
487	Printed zinc tin oxide diodes: from combustion synthesis to large-scale manufacturing. Flexible and Printed Electronics, 2022, 7, 014005.	2.7	5
488	Microwave-Assisted Synthesis of Zn2SnO4 Nanostructures for Photodegradation of Rhodamine B under UV and Sunlight. Nanomaterials, 2022, 12, 2119.	4.1	5
489	Engineering of the energy coupling in PECVD systems used to produce large area a-Si:H coatings. Vacuum, 1994, 45, 1107-1108.	3.5	4
490	A linear array thin film position sensitive detector for 3D measurements. Journal of Non-Crystalline Solids, 1996, 198-200, 1212-1216.	3.1	4
491	Transport properties of doped silicon oxycarbide microcrystalline films produced by spatial separation techniques. Solar Energy Materials and Solar Cells, 1996, 41-42, 493-517.	6.2	4
492	Dependence of amorphous silicon solar cell performances on the lateral drift current. Solar Energy Materials and Solar Cells, 1997, 45, 1-15.	6.2	4
493	Morphological and structural characteristics presented by the Cu–Sn–Cu metallurgical system used in electronic joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 288, 248-252.	5.6	4
494	Production of low cost contacts and joins for large area devices by electrodeposition of Cu and Sn. Applied Surface Science, 2000, 168, 292-295.	6.1	4
495	Silicon carbide photodiodes: Schottky and PINIP structures. Applied Surface Science, 2001, 184, 437-442.	6.1	4
496	Engineering of a-Si:H device stability by suitable design of interfaces. Solar Energy Materials and Solar Cells, 2002, 73, 39-49.	6.2	4
497	Synthesis, Characterization, and Processing of Cordieriteâ€Glass Particles Modified by Coating with an Alumina Precursor. Journal of the American Ceramic Society, 2002, 85, 155-160.	3.8	4
498	Investigation of a-Si:H 1D MIS position sensitive detectors for application in 3D sensors. Journal of Non-Crystalline Solids, 2006, 352, 1787-1791.	3.1	4
499	Investigation of hydrocarbon coated porous silicon using PECVD technique to detect CO2 gas. Journal of Non-Crystalline Solids, 2008, 354, 2610-2614.	3.1	4
500	Paper field effect transistor. Proceedings of SPIE, 2009, , .	0.8	4
501	From materials science to applications of amorphous, microcrystalline and nanocrystalline silicon and other semiconductors. Philosophical Magazine, 2009, 89, 2431-2434.	1.6	4
502	Structural, optical and electrical properties of indium–molybdenum oxide thin films prepared by spray pyrolysis. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1554-1557.	1.8	4
503	29.4: <i>Invited Paper</i> : Paper Electronics: A Challenge for the Future. Digest of Technical Papers SID International Symposium, 2013, 44, 365-367.	0.3	4
504	Effect of N and P codoping on ZnO properties. Advanced Materials Research, 0, 645, 64-67.	0.3	4

#	Article	IF	CITATIONS
505	Green Nanotechnology from Waste Carbon–Polyaniline Composite: Generation of Wavelengthâ€Independent Multiband Photoluminescence for Sensitive Ion Detection. Advanced Sustainable Systems, 2018, 2, 1700137.	5.3	4
506	Combining Soft with Hard Condensed Matter for Circular Polarized Light Sensing and Logic Operations. Advanced Optical Materials, 2021, 9, 2001731.	7.3	4
507	New strategies toward high-performance and low-temperature processing of solution-based metal oxide TFTs. , 2021, , 585-621.		4
508	N-Type Oxide Semiconductor Thin-Film Transistors. Springer Series in Materials Science, 2012, , 435-476.	0.6	4
509	Flexible, scalable, and efficient thermoelectric touch detector based on PDMS and graphite flakes. Flexible and Printed Electronics, 2021, 6, 045018.	2.7	4
510	Selective optical sensors from 0.25 to $1.1 ^{1}\!4$ m based on metal oxide-semiconductor heterojunctions. Sensors and Actuators A: Physical, 1998, 68, 333-337.	4.1	3
511	Transport properties in microcrystalline silicon solar cells under AM1.5 illumination analysed by two-dimensional numerical simulation. Solid-State Electronics, 1999, 43, 1709-1714.	1.4	3
512	Role of the gas pressure and hydrogen dilution on the properties of large area nanocrystalline p-type silicon films produced by hot wire technique. Materials Science and Engineering C, 2001, 15, 141-144.	7.3	3
513	Hot-wire plasma assisted chemical vapor deposition: A deposition technique to obtain silicon thin films. Journal of Applied Physics, 2002, 91, 1644-1649.	2.5	3
514	Study of the Sensing Mechanism of SnO ₂ Thin-Film Gas Sensors Using Hall Effect Measurements. Key Engineering Materials, 2002, 230-232, 357-360.	0.4	3
515	Metal-ferroelectric thin film devices. Journal of Non-Crystalline Solids, 2002, 299-302, 1311-1315.	3.1	3
516	Composite systems for flexible display applications from cellulose derivatives. Synthetic Metals, 2002, 127, 111-114.	3.9	3
517	Influence of a DC grid on silane r.f. plasma properties. Vacuum, 2002, 64, 387-392.	3.5	3
518	Effect of Annealing on Gold Rectifying Contacts in Amorphous Silicon. Materials Science Forum, 2004, 455-456, 96-99.	0.3	3
519	Impedance study of the electrical properties of poly-Si thin film transistors. Journal of Non-Crystalline Solids, 2006, 352, 1737-1740.	3.1	3
520	Performances of an in-line PECVD system used to produce amorphous and nanocrystalline silicon solar cells. Thin Solid Films, 2006, 511-512, 238-242.	1.8	3
521	Influence of the self-buffer layer on ZnO film grown by atmospheric metal organic chemical vapor deposition. Thin Solid Films, 2006, 515, 1527-1531.	1.8	3
522	3 dimensional polymorphous silicon based metal-insulator-semiconductor position sensitive detectors. Thin Solid Films, 2007, 515, 7530-7533.	1.8	3

#	Article	IF	CITATIONS
523	Indium molybdenum oxide thin films: A comparative study by two different RF sputtering systems. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2123-2127.	1.8	3
524	Influence of Deposition Pressure on N-doped ZnO Films by RF Magnetron Sputtering. Journal of Nanoscience and Nanotechnology, 2010, 10, 2674-2678.	0.9	3
525	Uniform Arrays of ZnO 1D Nanostructures Grown on Al:ZnO Seeds Layers by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2013, 13, 6701-6710.	0.9	3
526	Evaluation of the optoelectronic properties and corrosion behavior of Al ₂ O ₃ -doped ZnO films prepared by dc pulsed magnetron sputtering. Journal Physics D: Applied Physics, 2014, 47, 485501.	2.8	3
527	Color sensing ability of an amorphous silicon position sensitive detector array system. Sensors and Actuators A: Physical, 2014, 205, 26-37.	4.1	3
528	Energy band alignment at the nanoscale. Applied Physics Letters, 2017, 110, 051603.	3.3	3
529	Chromogenic applications. , 2019, , 103-147.		3
530	Frontispiece: Solution Combustion Synthesis: Towards a Sustainable Approach for Metal Oxides. Chemistry - A European Journal, 2020, 26, .	3.3	3
531	Orientation dependence of electrical properties of polycrystalline Cu2O thin films. Semiconductor Science and Technology, 2020, 35, 075016.	2.0	3
532	Porous ZnO Nanostructures Synthesized by Microwave Hydrothermal Method for Energy Harvesting Applications. , 0, , .		3
533	Hydrothermal Synthesis of Zinc Tin Oxide Nanostructures for Photocatalysis, Energy Harvesting and Electronics. , 0, , .		3
534	DIFFERENCES BETWEEN AMORPHOUS AND NANOSTRUCTURED SILICON FILMS AND THEIR APPLICATION IN SOLAR CELL. High Temperature Material Processes, 2007, 11, 575-583.	0.6	3
535	Influencia del gas portador en las propiedades de pelÃculas de ZnO crecidas mediante MOCVD. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2008, 47, 242-244.	1.9	3
536	E‣kin Piezoresistive Pressure Sensor Combining Laser Engraving and Shrinking Polymeric Films for Health Monitoring Applications. Advanced Materials Interfaces, 2021, 8, 2100877.	3.7	3
537	Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors. Nanomaterials, 2022, 12, 2167.	4.1	3
538	Light and temperature effect on pin a-Si: H device performance. Vacuum, 1994, 45, 1147-1149.	3.5	2
539	A linear array position sensitive detector based on amorphous silicon. Review of Scientific Instruments, 1995, 66, 5317-5321.	1.3	2
540	Performances presented by large-area thin film position-sensitive detectors based on amorphous silicon. Thin Solid Films, 1996, 272, 148-156.	1.8	2

#	Article	IF	CITATIONS
541	Silicon active optical sensors: from functional photodetectors to smart sensors. Sensors and Actuators A: Physical, 1998, 68, 359-364.	4.1	2
542	Transport properties of \hat{l}_4 c-Si:H analyzed by means of numerical simulation. Thin Solid Films, 1999, 337, 109-112.	1.8	2
543	Nanocrystalline p-type silicon films produced by hot wire plasma assisted technique. Materials Science and Engineering C, 2001, 15, 137-140.	7.3	2
544	Properties Presented by Tin Oxide Thin Films Deposited by Spray Pyrolysis. Solid State Phenomena, 2001, 80-81, 139-144.	0.3	2
545	Properties Presented by ZnO Thin Films Deposited by Magnetron Sputtering and Spray Pyrolysis. Key Engineering Materials, 2002, 230-232, 424-427.	0.4	2
546	Highly Conductive/Transparent ZnO:Al Thin Films Deposited at Room Temperature by rf Magnetron Sputtering. Key Engineering Materials, 2002, 230-232, 571-574.	0.4	2
547	Role of the i layer surface properties on the performance of a-Si:H Schottky barrier photodiodes. Sensors and Actuators A: Physical, 2002, 99, 220-223.	4.1	2
548	Combining HW-CVD and PECVD techniques to produce a-Si:H films. Thin Solid Films, 2003, 427, 231-235.	1.8	2
549	Physical Properties of Sputtered ITO and WO ₃ Thin Films. Materials Science Forum, 2004, 455-456, 7-11.	0.3	2
550	Novel structure for large area image sensing. Sensors and Actuators A: Physical, 2004, 115, 357-361.	4.1	2
551	Ethanol vapour detector based in porous a-Si:H films produced by HW-CVD technique. Sensors and Actuators B: Chemical, 2004, 100, 236-239.	7.8	2
552	Effect of an interfacial oxide layer in the annealing behaviour of Au/a-Si:H MIS photodiodes. Journal of Non-Crystalline Solids, 2004, 338-340, 810-813.	3.1	2
553	Characterization of silicon carbide thin films and their use in colour sensor. Solar Energy Materials and Solar Cells, 2005, 87, 343-348.	6.2	2
554	Study of Electrochromic Devices Incorporating a Polymer Gel Electrolyte Component. Materials Science Forum, 2006, 514-516, 83-87.	0.3	2
555	Insights on Amorphous Silicon Nip and MIS 3D Position Sensitive Detectors. Materials Science Forum, 2006, 514-516, 13-17.	0.3	2
556	Novel Optoelectronic Platform using an Amorphous/Nanocrystalline Silicon Biosensor for the Specific Identification of Unamplified Nucleic Acid Sequences Based on Gold Nanoparticle Probes. , 2007, , .		2
557	Multipliers with transparent a-GIZO TFTs using a neural model. , 2012, , .		2

0.2 2

#	Article	IF	CITATIONS
559	Transparent Current Mirrors Using a-GIZO TFTs: Simulation with RBF Models and Fabrication. , 2014, , .		2
560	Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays. Sensors, 2015, 15, 29938-29949.	3.8	2
561	Photovoltaics: Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layer (Adv. Mater. Interfaces 2/2018). Advanced Materials Interfaces, 2018, 5, 1870007.	3.7	2
562	STEM materials: a new frontier for an intelligent sustainable world. BMC Materials, 2019, 1, .	6.8	2
563	Solar Cells: Selfâ€Cleaned Photonicâ€Enhanced Solar Cells with Nanostructured Parylene (Adv. Mater.) Tj ET	Qq1_1 0.7	84314 rgBT
564	Discover Materials: the pathway to explore materials as activators of the challenges of the future. Discover Materials, 2021, 1, 1.	2.8	2
565	A New Ultra-Light Flexible Large Area Thin Film PSD Based on Amorphous Silicon. , 0, , 421-427.		2
566	Highly uniform large-area a-Si:H films. Solar Cells, 1985, 14, 281-287.	0.6	1
567	Application of thin film technology to optical sensors. Vacuum, 1994, 45, 1151-1154.	3.5	1
568	Spatial microscopic/macroscopic control and modeling of the p.i.n devices stability. , 1995, 2397, 695.		1
569	<title>Numerical simulation of a/uc-Si:H p-i-n photodiode under nonuniform illumination: a 2D
transport problem</title> . , 1997, , .		1
570	UV Enhanced and Solar Blind Photodetectors Based on Large-Band-Gap Materials. Materials Science Forum, 1997, 258-263, 1425-1430.	0.3	1
571	Correlation between the carbon and hydrogen contents with the gas species and the plasma impedance of silicon carbide films produced by PECVD technique. Applied Surface Science, 2001, 184, 101-106.	6.1	1
572	Large-Area Polycrystalline p-Type Silicon Films Produced by the Hot Wire Technique. Solid State Phenomena, 2001, 80-81, 47-52.	0.3	1
573	Silicon nanostructure thin film materials. Vacuum, 2002, 64, 219-226.	3.5	1
574	Characterization of Polymorphous Silicon Thin Film and Solar Cells. Materials Science Forum, 2004, 455-456, 77-80.	0.3	1
575	Composition, Structure and Optical Characteristics of Polymorphous Silicon Films Deposited by PECVD at 27.12 MHz. Materials Science Forum, 2004, 455-456, 100-103.	0.3	1
576	Growth of Polymorphous/Nanocrystalline Silicon Films Deposited by PECVD at 13.56 MHz. Materials Science Forum, 2004, 455-456, 532-535.	0.3	1

#	Article	IF	CITATIONS
577	Batch Processing Method to Deposit a-Si:H Films by PECVD. Materials Science Forum, 2004, 455-456, 104-107.	0.3	1
578	Silicon Etching in CF ₄ /O ₂ and SF ₆ Atmospheres. Materials Science Forum, 2004, 455-456, 120-123.	0.3	1
579	Role of the rf frequency on the structure and composition of polymorphous silicon films. Journal of Non-Crystalline Solids, 2004, 338-340, 183-187.	3.1	1
580	Study of a-SiC:H buffer layer on nc-Si/a-Si:H solar cells deposited by PECVD technique. , 0, , .		1
581	Influence of the Electrical and Structural Properties of Tin Oxide on the Performances of Combustible Gas Sensors. , 2006, , 477-482.		1
582	Influence of the ex-situ and in-situ annealed self-buffer layer on ZnO film. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1010-1013.	0.8	1
583	Role of Hydrogen Plasma on the Electrical and Optical Properties of Indium Zinc Transparent Conductive Oxide. Materials Science Forum, 2006, 514-516, 63-67.	0.3	1
584	Poly-Si Thin Film Transistors: Effect of Metal Thickness on Silicon Crystallization. Materials Science Forum, 2006, 514-516, 28-32.	0.3	1
585	Electrical Performances of Low Temperature Annealed Hafnium Oxide Deposited at Room Temperature. Materials Science Forum, 2006, 514-516, 58-62.	0.3	1
586	Metal contamination detection in nickel induced crystallized silicon by spectroscopic ellipsometry. Journal of Non-Crystalline Solids, 2008, 354, 2319-2323.	3.1	1
587	Effect of annealing on the properties of RF sputtered indium molybdenum oxide thin films. Journal of Non-Crystalline Solids, 2008, 354, 2831-2838.	3.1	1
588	New Amorphous Oxide Semiconductor for Thin Film Transistors (TFTs). Materials Science Forum, 2008, 587-588, 348-352.	0.3	1
589	Floating gate memory paper transistor. , 2010, , .		1
590	Influence of oxygen partial pressure on properties of N-doped ZnO films deposited by magnetron sputtering. Transactions of Nonferrous Metals Society of China, 2010, 20, 2326-2330.	4.2	1
591	Multicomponent dielectrics for oxide TFT. Proceedings of SPIE, 2012, , .	0.8	1
592	A combination of solution synthesis & solution combustion synthesis for highly conducting and transparent Aluminum Zinc Oxide thin films. , 2015, , .		1
593	Solution Combustion Synthesis: Applications in Oxide Electronics. , 2016, , .		1
594	Transistors: Solid State Electrochemical WO ₃ Transistors with High Current Modulation (Adv. Electron. Mater. 9/2016). Advanced Electronic Materials, 2016, 2, .	5.1	1

#	Article	IF	CITATIONS
595	Green Nanotechnology: Green Nanotechnology from Waste Carbon–Polyaniline Composite: Generation of Wavelengthâ€Independent Multiband Photoluminescence for Sensitive Ion Detection (Adv. Sustainable Syst. 1/2018). Advanced Sustainable Systems, 2018, 2, 1870002.	5.3	1
596	Oxide nanoparticle hybrid materials and applications. , 2019, , 235-281.		1
597	Oxide materials for energy applications. , 2019, , 199-234.		1
598	SPECTRAL RESPONSE OF LARGE AREA AMORPHOUS SILICON SOLAR CELLS. High Temperature Material Processes, 2004, 8, 293-299.	0.6	1
599	Surface-enhanced Raman scattering paper-based analytical devices. , 2022, , 117-167.		1
600	Digital Microfluidics for Amplification Monitoring of Cancer Biomarkers. , 0, , .		1
601	Performances presented by a position-sensitive detector based on amorphous silicon technology. , 1993, , .		0
602	Temperature and light-induced degradation effect on a-Si:H photovoltaic PIN device properties. , 1993, ,		0
603	Influence of photodegradation on the ÏÏ,, and microstructure of pin a-Si:H devices. Vacuum, 1994, 45, 1109-1111.	3.5	0
604	Hydrogenated amorphous silicon speed sensor based on the flying spot technique. , 1995, , .		0
605	Simulation of the lateral photo effect in large-area 1D a-Si:H p-i-n thin-film position-sensitive detectors. , 1995, , .		0
606	Static behaviour of thin-film position-sensitive detectors based on p-i-n a-Si:H devices. Sensors and Actuators A: Physical, 1995, 51, 143-151.	4.1	0
607	Amorphous and microcrystalline silicon p-i-n optical speed sensors based on the flying spot technique. Journal of Non-Crystalline Solids, 1996, 198-200, 1193-1197.	3.1	0
608	From intelligent materials to smart sensors. , 1996, , .		0
609	Two Step Process for the Growth of a Thin Layer of Silicon Dioxide for Tunneling Effect Applications. Materials Research Society Symposia Proceedings, 2000, 619, 179.	0.1	0
610	Role of soldering parameters on the electrical performances presented by Cu–Sn–Cu joints used in power diodes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 288, 275-279.	5.6	0
611	Properties of ZnO Thin Films Deposited by Spray Pyrolysis and Magnetron Sputtering. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
612	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 1131.	0.1	0

#	Article	IF	CITATIONS
613	Characterization of Zinc Oxide Thin Films Deposited by rf Magnetron Sputtering on Mylar Substrates. Materials Research Society Symposia Proceedings, 2001, 666, 3211.	0.1	Ο
614	Zinc Oxide Thin Films Deposited by RF Magnetron Sputtering on Mylar Substrates at Room Temperature. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
615	Thin Film Metal Oxide Semiconductors Deposited on Polymeric Substrates. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	Ο
616	Performances Presented by Large Area ZnO Thin Films Deposited by Spray Pyrolysis. Materials Research Society Symposia Proceedings, 2001, 685, 1.	0.1	0
617	Effect of Deposition Conditions upon Gas Sensitivity of Zinc Oxide Thin Films Deposited by Spray Pyrolysis. Solid State Phenomena, 2001, 80-81, 151-154.	0.3	Ο
618	Silicon Films Produced by PECVD under Powder Formation Conditions. Materials Science Forum, 2001, 382, 21-30.	0.3	0
619	Influence of the Plasma Regime on the Structural, Optical and Transport Properties of a-Si:H Thin Films. Key Engineering Materials, 2002, 230-232, 583-586.	0.4	Ο
620	New Adhesion Process Based on Lead-Free Solder Applied in Electronic Power Devices. Key Engineering Materials, 2002, 230-232, 92-95.	0.4	0
621	Role of the Density of States in the Colour Selection of the Collection Spectrum of Amorphous Silicon-Based Schottky Photodiodes. Key Engineering Materials, 2002, 230-232, 559-562.	0.4	Ο
622	Optical and Photoelectric Properties of PZT Films for Microelectronic Applications. Key Engineering Materials, 2002, 230-232, 563-566.	0.4	0
623	Influence of Hydrogen Gas Dilution on the Properties of Silicon-Doped Thin Films Prepared by the Hot-Wire Plasma-Assisted Technique. Key Engineering Materials, 2002, 230-232, 591-594.	0.4	Ο
624	Role of the i-Layer Thickness in the Performance of a-Si:H Schottky Barrier Photodiodes. Key Engineering Materials, 2002, 230-232, 587-590.	0.4	0
625	Growth Model of Gas Species Produced by the Hot-Wire and Hot-Wire Plasma-Assisted Techniques. Key Engineering Materials, 2002, 230-232, 603-606.	0.4	Ο
626	The properties of a-Si:H films deposited on Mylar substrates by hot-wire plasma assisted technique. Journal of Non-Crystalline Solids, 2002, 299-302, 30-35.	3.1	0
627	Influence of the Rapid Thermal Annealing on the Properties of Thin a-Si Films. Materials Science Forum, 2004, 455-456, 108-111.	0.3	Ο
628	Role of Substrate on the Growth Process of Polycrystalline Silicon Thin Films by Low-Pressure Chemical Vapour Deposition. Materials Science Forum, 2004, 455-456, 112-115.	0.3	0
629	Sputtering Preparation of Silicon Nitride Thin Films for Gate Dielectric Applications. Materials Science Forum, 2004, 455-456, 69-72.	0.3	0
630	Aqueous Tape Casting of Low-k Cordierite Substrate: The Influence of Glass Content. Materials Science Forum, 2004, 455-456, 168-171.	0.3	0

#	Article	IF	CITATIONS
631	MIS Photodiodes of Polymorphous Silicon Deposited at Higher Growth Rates by 27.12 MHz PECVD Discharge. Materials Science Forum, 2004, 455-456, 73-76.	0.3	0
632	Dynamic Characterization of Large Area Image Sensing Structures Based on a-SiC:H. Materials Science Forum, 2004, 455-456, 86-90.	0.3	0
633	Properties of a-Si:H intrinsic films produced by HWPA-CVD technique. Thin Solid Films, 2004, 451-452, 366-369.	1.8	0
634	Effect of the tunnelling oxide thickness and density on the performance of MIS photodiodes. Thin Solid Films, 2004, 451-452, 361-365.	1.8	0
635	Excellence in European universities. Materials Today, 2004, 7, 56-60.	14.2	0
636	Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si:H MIS photodiodes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 109, 256-259.	3.5	0
637	The Study of High Temperature Annealing of a-SiC:H Films. Materials Science Forum, 2006, 514-516, 18-22.	0.3	0
638	Characterization of Nickel Induced Crystallized Silicon by Spectroscopic Ellipsometry. Materials Research Society Symposia Proceedings, 2006, 910, 6.	0.1	0
639	Optical and Microstructural Investigations of Porous Silicon Coated with a-Si:H Using PECVD Technique. Materials Science Forum, 0, 587-588, 308-312.	0.3	0
640	Zinc oxide and related compounds: order within the disorder. Proceedings of SPIE, 2009, , .	0.8	0
641	Nanostructured Silicon Based Thin Film Transistors Processed in the Plasma Dark Region. Journal of Nanoscience and Nanotechnology, 2010, 10, 2938-2943.	0.9	0
642	Foreword [Special Issue on the 8th International Thin-Film Transistor Conference (ITC 2012)]. Journal of Display Technology, 2013, 9, 687-687.	1.2	0
643	Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications. , 2015, , 1-29.		0
644	Electrochemical Transistor Based on Tungsten Oxide with Optoelectronic Properties. IFIP Advances in Information and Communication Technology, 2016, , 542-550.	0.7	0
645	Novel linear analog-adder using a-IGZO TFTs. , 2016, , .		0
646	Paper electronics: a sustainable multifunctional platform. , 2018, , .		0
647	25.3: <i>Invited Paper:</i> Designing the Future with Sustainable Multifunctional Paper Platforms. Digest of Technical Papers SID International Symposium, 2019, 50, 253-254.	0.3	0
648	Editorial for the Special Issue "Characterization of Nanomaterials: Selected Papers from 6th Dresden Nanoanalysis Symposium― Nanomaterials, 2019, 9, 1527.	4.1	0

#	Article	IF	CITATIONS
649	Electronic applications of oxide nanostructures. , 2019, , 149-197.		Ο
650	Conclusions and future perspectives. , 2019, , 283-295.		0
651	Microwave-Assisted Hydrothermal Synthesis of Zn2SnO4 Nanostructures for Photocatalytic Dye Degradation. Materials Proceedings, 2021, 4, 92.	0.2	Ο
652	43.1: Invited Paper: Functional Oxides to serve the Electronics Challenges of the Future. Digest of Technical Papers SID International Symposium, 2021, 52, 537-538.	0.3	0
653	Metal Oxide Nanoparticle Engineering for Printed Electrochemical Applications. , 2016, , 783-818.		Ο
654	Composites Based on PDMS and Graphite Flakes for Thermoelectric Sensing Applications. , 2022, 8, .		0