Marc S Weinberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3351901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear microRNA-466c regulates Vegfa expression in response to hypoxia. PLoS ONE, 2022, 17, e0265948.	1.1	10
2	Broadly active zinc finger protein-guided transcriptional activation of HIV-1. Molecular Therapy - Methods and Clinical Development, 2021, 20, 18-29.	1.8	8
3	Neutralization Breadth and Potency of Single-Chain Variable Fragments Derived from Broadly Neutralizing Antibodies Targeting Multiple Epitopes on the HIV-1 Envelope. Journal of Virology, 2020, 94, .	1.5	15
4	An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6571-6579.	3.3	35
5	AAV-Mediated Expression of Broadly Neutralizing and Vaccine-like Antibodies Targeting the HIV-1 Envelope V2 Region. Molecular Therapy - Methods and Clinical Development, 2019, 14, 100-112.	1.8	24
6	Effect of transcription inhibition and generation of suppressive viral non-coding RNAs. Retrovirology, 2019, 16, 13.	0.9	18
7	Stable Transcriptional Repression and Parasitism of HIV-1. Molecular Therapy - Nucleic Acids, 2018, 12, 12-18.	2.3	6
8	Receptor-targeted aptamer-siRNA conjugate-directed transcriptional regulation of HIV-1. Theranostics, 2018, 8, 1575-1590.	4.6	47
9	Molecular trade-offs in RNA ligases affected the modular emergence of complex ribozymes at the origin of life. Royal Society Open Science, 2017, 4, 170376.	1.1	1
10	ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Scientific Reports, 2017, 7, 7401.	1.6	53
11	The Application of CRISPR/Cas9 Technologies and Therapies in Stem Cells. Current Stem Cell Reports, 2016, 2, 95-103.	0.7	2
12	Transcriptional gene silencing in humans. Nucleic Acids Research, 2016, 44, 6505-6517.	6.5	81
13	Long Non-coding RNA BGas Regulates the Cystic Fibrosis Transmembrane Conductance Regulator. Molecular Therapy, 2016, 24, 1351-1357.	3.7	28
14	MINCR is not a MYC-induced IncRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E496-7.	3.3	6
15	Design of Effective Primary MicroRNA Mimics With Different Basal Stem Conformations. Molecular Therapy - Nucleic Acids, 2016, 5, e278.	2.3	6
16	Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex. Molecular Therapy, 2016, 24, 488-498.	3.7	109
17	Synthetic SiRNA Delivery: Progress and Prospects. Methods in Molecular Biology, 2016, 1364, 291-310.	0.4	39
18	Multiplexed CRISPR/Cas9 genome editing increases the efficacy of homologous-dependent repair of donor sequences in mammalian cells. South African Journal of Science, 2015, 111, 7.	0.3	0

MARC S WEINBERG

#	Article	IF	CITATIONS
19	Cell-Specific RNA Aptamer against Human CCR5 Specifically Targets HIV-1 Susceptible Cells and Inhibits HIV-1 Infectivity. Chemistry and Biology, 2015, 22, 379-390.	6.2	71
20	Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR. Nature Protocols, 2015, 10, 1198-1211.	5.5	99
21	HIV Latency and the Noncoding RNA Therapeutic Landscape. Advances in Experimental Medicine and Biology, 2015, 848, 169-189.	0.8	11
22	The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opinion on Biological Therapy, 2015, 15, 819-830.	1.4	66
23	A brave new MYC-amplified world. Aging, 2015, 7, 459-460.	1.4	3
24	Construction of Mismatched Inverted Repeat (IR) Silencing Vectors for Maximizing IR Stability and Effective Gene Silencing in Plants. Methods in Molecular Biology, 2015, 1287, 295-304.	0.4	0
25	MYC regulates the non-coding transcriptome. Oncotarget, 2014, 5, 12543-12554.	0.8	79
26	A New World Order: Tailored Gene Targeting and Regulation Using CRISPR. Molecular Therapy, 2014, 22, 893.	3.7	5
27	Therapeutic Aptamers March On. Molecular Therapy - Nucleic Acids, 2014, 3, e194.	2.3	12
28	Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics, 2014, 9, 13-20.	1.3	124
29	The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization. Scientific Reports, 2014, 4, 5556.	1.6	31
30	Chromosomal Contact Permits Transcription between Coregulated Genes. Cell, 2013, 155, 606-620.	13.5	175
31	The oncogenic TBX3 is a downstream target and mediator of the TGF-β1 signaling pathway. Molecular Biology of the Cell, 2013, 24, 3569-3576.	0.9	46
32	Long Non-Coding RNA Targeting and Transcriptional De-Repression. Nucleic Acid Therapeutics, 2013, 23, 9-14.	2.0	40
33	Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimer's disease. Scientific Reports, 2013, 3, 2699.	1.6	23
34	Anti-LRP/LR specific antibody IgG1-iS18 and knock-down of LRP/LR by shRNAs rescue cells from Aβ42 induced cytotoxicity. Scientific Reports, 2013, 3, 2702.	1.6	23
35	Silencing of Parkinson's disease-associated genes with artificial mirtron mimics of miR-1224. Nucleic Acids Research, 2012, 40, 9863-9875.	6.5	37
36	Pathogenic effects of Rift Valley fever virus NSs gene are alleviated in cultured cells by expressed antiviral short hairpin RNAs. Antiviral Therapy, 2012, 17, 643-656.	0.6	11

MARC S WEINBERG

#	Article	IF	CITATIONS
37	The biogenesis and characterization of mammalian microRNAs of mirtron origin. Nucleic Acids Research, 2012, 40, 438-448.	6.5	86
38	Impact of sustained RNAi-mediated suppression of cellular cofactor Tat-SF1 on HIV-1 replication in CD4+ T cells. Virology Journal, 2012, 9, 272.	1.4	8
39	Construction of effective inverted repeat silencing constructs using sodium bisulfite treatment coupled with strand-specific PCR. BioTechniques, 2012, 52, 254-62.	0.8	2
40	Small RNA-Induced Transcriptional Gene Regulation in Mammals. Progress in Molecular Biology and Translational Science, 2011, 102, 11-46.	0.9	9
41	Deriving four functional anti-HIV siRNAs from a single Pol III-generated transcript comprising two adjacent long hairpin RNA precursors. Nucleic Acids Research, 2010, 38, 6652-6663.	6.5	32
42	Inhibition of hepatitis B virus replication in vivo using lipoplexes containing altritol-modified antiviral siRNAs. Artificial DNA, PNA & XNA, 2010, 1, 17-26.	1.4	28
43	tRNALys3 promoter cassettes that efficiently express RNAi-activating antihepatitis B virus short hairpin RNAs. Biochemical and Biophysical Research Communications, 2010, 398, 640-646.	1.0	11
44	Progress in the use of RNA interference as a therapy for chronic hepatitis B virus infection. Genome Medicine, 2010, 2, 28.	3.6	15
45	Effective Pol III-Expressed Long Hairpin RNAs Targeted to Multiple Unique Sites of HIV-1. Methods in Molecular Biology, 2010, 629, 157-172.	0.4	8
46	Design of RNAi Hairpins for Mutation-Specific Silencing of Ataxin-7 and Correction of a SCA7 Phenotype. PLoS ONE, 2009, 4, e7232.	1.1	57
47	RNA Interference-Based Gene Expression Strategies Aimed at Sustained Therapeutic Inhibition of HIV. Current Topics in Medicinal Chemistry, 2009, 9, 1065-1078.	1.0	10
48	Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. Human Molecular Genetics, 2009, 18, R27-R39.	1.4	70
49	Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles. Biochemical and Biophysical Research Communications, 2009, 389, 484-489.	1.0	17
50	Hepatic Delivery of RNA Interference Activators for Therapeutic Application. Current Gene Therapy, 2009, 9, 91-103.	0.9	17
51	The Efficacy of Generating Three Independent Anti-HIV-1 siRNAs from a Single U6 RNA Pol III-Expressed Long Hairpin RNA. PLoS ONE, 2008, 3, e2602.	1.1	49
52	An RNA targeted to the HIV-1 LTR promoter modulates indiscriminate off-target gene activation. Nucleic Acids Research, 2007, 35, 7303-7312.	6.5	40
53	Specific Inhibition of HBV Replication In Vitro and In Vivo With Expressed Long Hairpin RNA. Molecular Therapy, 2007, 15, 534-541.	3.7	80
54	The Inhibitory Efficacy of RNA POL III-Expressed Long Hairpin RNAs Targeted to Untranslated Regions of the HIV-1 5′ Long Terminal Repeat. Oligonucleotides, 2007, 17, 419-432.	2.7	38

MARC S WEINBERG

#	Article	IF	CITATIONS
55	Effective Anti-Hepatitis B Virus Hammerhead Ribozymes Derived from Multimeric Precursors. Oligonucleotides, 2007, 17, 104-112.	2.7	13
56	Progress and prospects: RNA-based therapies for treatment of HIV infection. Gene Therapy, 2007, 14, 1057-1064.	2.3	77
57	Opportunities for treating chronic hepatitis B and C virus infection using RNA interference. Journal of Viral Hepatitis, 2007, 14, 447-459.	1.0	33
58	Silencing of HIV-1 Subtype C Primary Isolates by Expressed Small Hairpin RNAs Targeted togag. AIDS Research and Human Retroviruses, 2006, 22, 401-410.	0.5	13
59	Are Viral-Encoded MicroRNAs Mediating Latent HIV-1 Infection?. DNA and Cell Biology, 2006, 25, 223-231.	0.9	36
60	Effective Inhibition of HBV Replication in Vivo by Anti-HBx Short Hairpin RNAs. Molecular Therapy, 2006, 13, 411-421.	3.7	103
61	The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. Rna, 2005, 12, 256-262.	1.6	251
62	Comparative single-turnover kinetic analyses oftrans-cleaving hammerhead ribozymes with naturally derived non-conserved sequence motifs. FEBS Letters, 2005, 579, 1619-1624.	1.3	21
63	In Situ Demonstration of Inhibitory Effects of Hammerhead Ribozymes That Are Targeted to the Hepatitis Bx Sequence in Cultured Cells. Biochemical and Biophysical Research Communications, 2000, 268, 728-733.	1.0	42
64	Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. Journal of Hepatology, 2000, 33, 142-151.	1.8	43