Carlos Gustavo De Moraes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3351802/publications.pdf

Version: 2024-02-01

59 papers

1,313 citations

16 h-index 32 g-index

60 all docs 60 docs citations

60 times ranked

1161 citing authors

#	Article	IF	CITATIONS
1	Relationship between mean follow-up intraocular pressure, rates of visual field progression and current target intraocular pressure guidelines. British Journal of Ophthalmology, 2022, 106, 229-233.	3.9	2
2	Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma. JAMA Ophthalmology, 2022, 140, 11.	2.5	51
3	Clinicians' Use of Quantitative Information When Assessing the Rate of Structural Progression in Glaucoma. Ophthalmology Glaucoma, 2022, 5, 507-515.	1.9	1
4	Peak Intraocular Pressure Time during Water Drinking Test and Its Relationship with Glaucoma Severity. Journal of Ophthalmic and Vision Research, 2022, 17, 27-32.	1.0	0
5	Comparison of the short-term results of nasal and temporal 180° selective laser trabeculoplasties for open-angle glaucoma. Arquivos Brasileiros De Oftalmologia, 2022, 86, .	0.5	O
6	Blood pressure control and glaucoma risk in postmenopausal women. Menopause, 2022, Publish Ahead of Print, 531-536.	2.0	0
7	Clinicians' Use of Quantitative Information when Assessing the Rate of Functional Progression in Glaucoma. Ophthalmology Glaucoma, 2022, , .	1.9	O
8	The OCT RNFL Probability Map and Artifacts Resembling Glaucomatous Damage. Translational Vision Science and Technology, 2022, 11, 18.	2.2	10
9	Combined Use of Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma—Reply. JAMA Ophthalmology, 2022, , .	2.5	1
10	The 24-2 Visual Field Guided Progression Analysis Can Miss the Progression of Glaucomatous Damage of the Macula Seen Using OCT. Ophthalmology Glaucoma, 2022, 5, 614-627.	1.9	4
11	Test of a Retinal Nerve Fiber Bundle Trajectory Model Using Eyes With Glaucomatous Optic Neuropathy. Translational Vision Science and Technology, 2022, 11, 7.	2.2	1
12	Central Visual Field Defects in Patients with Distinct Glaucomatous Optic Disc Phenotypes. American Journal of Ophthalmology, 2021, 223, 229-240.	3.3	7
13	Variability and Power to Detect Progression of Different Visual Field Patterns. Ophthalmology Glaucoma, 2021, 4, 617-623.	1.9	7
14	Detecting Progression in Advanced Glaucoma: Are Optical Coherence Tomography Global Metrics Viable Measures?. Optometry and Vision Science, 2021, 98, 518-530.	1.2	4
15	Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest. Translational Vision Science and Technology, 2021, 10, 19.	2.2	10
16	Progressive Thinning of Retinal Nerve FiberÂLayer and Ganglion Cell–Inner Plexiform Layer in Glaucoma Eyes with DiscÂHemorrhage. Ophthalmology Glaucoma, 2021, 4, 541-549.	1.9	5
17	Characteristics of Central Visual Field Progression in Eyes with Optic Disc Hemorrhage. American Journal of Ophthalmology, 2021, 231, 109-119.	3.3	10
18	Central-most Visual Field Defects in Early Glaucoma. Journal of Glaucoma, 2021, 30, e68-e75.	1.6	7

#	Article	IF	CITATIONS
19	Impact of resistance training sets performed until muscular failure with different loads on intraocular pressure and ocular perfusion pressure. European Journal of Ophthalmology, 2020, 30, 1342-1348.	1.3	9
20	Review of the measurement and management of 24-hour intraocular pressure in patients with glaucoma. Survey of Ophthalmology, 2020, 65, 171-186.	4.0	33
21	Characterization of Central Visual Field Loss in End-stage Glaucoma by Unsupervised Artificial Intelligence. JAMA Ophthalmology, 2020, 138, 190.	2.5	36
22	Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma. Ophthalmology, 2020, 127, 731-738.	5.2	33
23	Inter-Eye Association of Visual Field Defects in Glaucoma and Its Clinical Utility. Translational Vision Science and Technology, 2020, 9, 22.	2.2	5
24	A Topographic Comparison of OCT Minimum Rim Width (BMO-MRW) and Circumpapillary Retinal Nerve Fiber Layer (cRNFL) Thickness Measures in Eyes With or Suspected Glaucoma. Journal of Glaucoma, 2020, 29, 671-680.	1.6	9
25	Improving the Detection of Glaucoma and Its Progression: A Topographical Approach. Journal of Glaucoma, 2020, 29, 613-621.	1.6	11
26	Primary Open Angle Glaucoma and Vascular Risk Factors: A Review of Population Based Studies from 1990 to 2019. Journal of Clinical Medicine, 2020, 9, 761.	2.4	69
27	Review of Hygiene and Disinfection Recommendations for Outpatient Glaucoma Care: A COVID Era Update. Journal of Glaucoma, 2020, 29, 409-416.	1.6	22
28	Detection of Progression With 10-2 Standard Automated Perimetry: Development and Validation of an Event-Based Algorithm. American Journal of Ophthalmology, 2020, 216, 37-43.	3.3	11
29	Reply. Ophthalmology, 2019, 126, e78-e79.	5.2	0
30	An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis., 2019, 60, 365.		78
31	Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms. Ophthalmology, 2019, 126, 822-828.	5.2	31
32	In Reply. Journal of Glaucoma, 2019, 28, e50.	1.6	0
33	Association of Macular Visual Field Measurements With Glaucoma Staging Systems. JAMA Ophthalmology, 2019, 137, 139.	2.5	22
34	Spatial correlation between localized decreases in exploratory visual search performance and areas of glaucomatous visual field loss. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 153-160.	1.9	5
35	Reply. Ophthalmology, 2018, 125, e27-e28.	5.2	0
36	The importance of combining structure and function to measure rates of progression in glaucoma. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1225-1226.	1.9	0

#	Article	IF	Citations
37	Reversal of Glaucoma Hemifield Test Results and Visual Field Features in Glaucoma. Ophthalmology, 2018, 125, 352-360.	5.2	36
38	Author Response: Challenges to the Common Clinical Paradigm for Diagnosis of Glaucomatous Damage With OCT and Visual Fields. , 2018, 59, 5524.		1
39	Association Between 24-Hour Intraocular Pressure Monitored With Contact Lens Sensor and Visual Field Progression in Older Adults With Glaucoma. JAMA Ophthalmology, 2018, 136, 779.	2.5	55
40	Association between Rates of Retinal Nerve Fiber Layer Thinning and Previous Disc Hemorrhage in Glaucoma. Ophthalmology Glaucoma, 2018, 1, 23-31.	1.9	7
41	Interindividual Variations in Foveal Anatomy and Artifacts Seen on Inner Retinal Probability Maps from Spectral Domain OCT Scans of the Macula. Translational Vision Science and Technology, 2018, 7, 4.	2.2	9
42	Reply. Ophthalmology, 2018, 125, e66-e67.	5.2	0
43	Association Between Undetected 10-2 Visual Field Damage and Vision-Related Quality of Life in Patients With Glaucoma. JAMA Ophthalmology, 2017, 135, 742.	2.5	87
44	Visual Search Performance in Patients with Vision Impairment: A Systematic Review. Current Eye Research, 2017, 42, 1561-1571.	1.5	4
45	Impact of Natural Blind Spot Location on Perimetry. Scientific Reports, 2017, 7, 6143.	3.3	10
46	Screening for glaucoma in populations at high risk: The eye screening New York project. Cogent Medicine, 2017, 4, 1367059.	0.7	14
47	Technology and the Glaucoma Suspect. , 2016, 57, OCT80.		23
48	African Descent and Glaucoma Evaluation Study (ADAGES). Ophthalmology, 2016, 123, 1476-1483.	5.2	33
49	Visual Field Change and 24-Hour IOP-Related Profile with a Contact Lens Sensor in Treated Glaucoma Patients. Ophthalmology, 2016, 123, 744-753.	5. 2	79
50	Why Do People (Still) Go Blind from Glaucoma?. Translational Vision Science and Technology, 2015, 4, 1.	2.2	118
51	Risk Factors for Optic Disc Hemorrhage in the Low-Pressure Glaucoma Treatment Study. American Journal of Ophthalmology, 2014, 157, 945-952.e1.	3.3	70
52	A New Index to Monitor Central Visual Field Progression in Glaucoma. Ophthalmology, 2014, 121, 1531-1538.	5.2	11
53	Visual field progression outcomes in glaucoma subtypes. Acta Ophthalmologica, 2013, 91, 288-293.	1.1	53
54	A Validated Risk Calculator to Assess Risk and Rate of Visual Field Progression in Treated Glaucoma Patients., 2012, 53, 2702.		39

#	Article	IF	CITATIONS
55	Effect of Treatment on the Rate of Visual Field Change in the Ocular Hypertension Treatment Study Observation Group., 2012, 53, 1704.		50
56	Risk Factors for Visual Field Progression in the Low-pressure Glaucoma Treatment Study. American Journal of Ophthalmology, 2012, 154, 702-711.	3.3	107
57	Clinical use of multifocal visual-evoked potentials in a glaucoma practice: a prospective study. Documenta Ophthalmologica, 2012, 125, 1-9.	2.2	10
58	Beta-zone parapapillary atrophy and multifocal visual evoked potentials in eyes with glaucomatous optic neuropathy. Documenta Ophthalmologica, 2011, 123, 43-50.	2.2	3
59	Does structural damage precede functional loss in glaucoma?. Expert Review of Ophthalmology, 2010, 5, 451-462.	0.6	0