Junji Hyodo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/335179/publications.pdf

Version: 2024-02-01

430874 377865 1,153 44 18 34 h-index citations g-index papers 48 48 48 1586 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Determination of Oxide Ion Conductivity in Ba-Doped LaYbO ₃ Proton-Conducting Perovskites via an Oxygen Isotope Exchange Method. Journal of Physical Chemistry C, 2021, 125, 1703-1713.	3.1	9
2	Water Vapor Reduces the Effect of Cl-Poisoning on CO Oxidation over Pt/CeO ₂ Heterogeneous Catalysts. Chemistry Letters, 2021, 50, 888-891.	1.3	1
3	Non-linear Behavior for Chemical Expansion in Yttrium-doped Barium Zirconate upon Hydration. Chemistry Letters, 2021, 50, 899-902.	1.3	8
4	Accelerated Discovery of Proton-Conducting Perovskite Oxide by Capturing Physicochemical Fundamentals of Hydration. ACS Energy Letters, 2021, 6, 2985-2992.	17.4	24
5	Oxygen Affinity: The Missing Link Enabling Prediction of Proton Conductivities in Doped Barium Zirconates. Chemistry of Materials, 2020, 32, 7292-7300.	6.7	25
6	Fast and Stable Proton Conduction in Heavily Scandiumâ€Doped Polycrystalline Barium Zirconate at Intermediate Temperatures. Advanced Energy Materials, 2020, 10, 2000213.	19.5	53
7	Defect Density-Dependent Electron Injection from Excited-State Ru(II) Tris-Diimine Complexes into Defect-Controlled Oxide Semiconductors. Journal of Physical Chemistry C, 2019, 123, 28310-28318.	3.1	9
8	Bolometric ferromagnetic resonance techniques for characterising spin-Hall effect at high temperatures. Journal of Magnetism and Magnetic Materials, 2019, 485, 304-307.	2.3	6
9	Crucial impact of reduction on the photocarrier dynamics of SrTiO ₃ powders studied by transient absorption spectroscopy. Journal of Materials Chemistry A, 2019, 7, 26139-26146.	10.3	21
10	Homogeneous Electron Doping into Nonstoichiometric Strontium Titanate Improves Its Photocatalytic Activity for Hydrogen and Oxygen Evolution. ACS Catalysis, 2018, 8, 7190-7200.	11.2	34
11	Evaluation of isotope diffusion coefficient and surface exchange coefficient of ScSZ series oxide by oxygen isotope exchange method. Solid State Ionics, 2017, 301, 156-162.	2.7	7
12	Structural, Electrical, and Electrochemical Characteristics of LnBa _{0.5} Sr _{0.5} Co _{1.5} Fe _{0.5} O _{5+<i>i)î</i>i>} (Ln=Pr,) 2017, 5, 1337-1343.	Tj FTQq0 (O OʻggBT /Ove
13	Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. International Journal of Hydrogen Energy, 2016, 41, 1419-1431.	7.1	32
14	A robust symmetrical electrode with layered perovskite structure for direct hydrocarbon solid oxide fuel cells: PrBa _{0.8} Ca _{0.2} Mn ₂ O _{5+Î} . Journal of Materials Chemistry A, 2016, 4, 1747-1753.	10.3	93
15	Effects of Pt dispersion on electronic and oxide ionic conductivity in Pr _{1.90} Ni _{0.71} Cu _{0.24} Ga _{0.05} O ₄ . Physical Chemistry Chemical Physics, 2016, 18, 11125-11131.	2.8	2
16	Effects of three-dimensional mechano-chemical tensile strain on fast oxygen diffusion in Au-dispersed Pr _{1.90} Ni _{0.71} Cu _{0.24} Ga _{0.05} O _{4+Î} . Journal of Materials Chemistry A, 2016, 4, 3844-3849.	10.3	5
17	Ruddlesden Popper oxides of LnSr ₃ Fe ₃ O _{10â^î} (Ln = La, Pr, Nd, Sm,) Tj ET Chemistry A, 2015, 3, 12357-12366.	Qq1 1 0.7 10.3	784314 rgBT 31
18	A dense La(Sr)Fe(Mn)O _{3â⁻δ} nano-film anode for intermediate-temperature solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 3586-3593.	10.3	7

#	Article	IF	Citations
19	Chromium deposition and poisoning of La _{0.8} Sr _{0.2} MnO ₃ oxygen electrodes of solid oxide electrolysis cells. Faraday Discussions, 2015, 182, 457-476.	3.2	41
20	Correlation between fast oxygen kinetics and enhanced performance in Fe doped layered perovskite cathodes for solid oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 15082-15090.	10.3	48
21	Chromium Deposition and Poisoning of LSCF and LSM Oxygen Electrodes of Solid Oxide Electrolysis Cells. ECS Transactions, 2015, 68, 793-799.	0.5	4
22	Low temperature operation of a solid-oxide Fe–air rechargeable battery using a La _{0.9} Sr _{0.1} Ga _{0.8} Mg _{0.2} O ₃ oxide ion conductor. Journal of Materials Chemistry A, 2015, 3, 8260-8264.	10.3	11
23	Effects of Three-Dimensional Strain on Electric Conductivity in Au-Dispersed Pr _{1.90} Ni _{0.71} Cu _{0.24} Ga _{0.05} O _{4+δ} . Journal of Physical Chemistry C, 2015, 119, 5-13.	3.1	14
24	Titelbild: Development of Double-Perovskite Compounds as Cathode Materials for Low-Temperature Solid Oxide Fuel Cells (Angew. Chem. 48/2014). Angewandte Chemie, 2014, 126, 13187-13187.	2.0	0
25	Effect of Volatile Boron Species on the Electrocatalytic Activity of Cathodes of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F1163-F1170.	2.9	17
26	Ce(Mn,Fe)O2 dense film deposited on LaGaO3 electrolyte for dense anode of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39, 20777-20782.	7.1	0
27	Double Columnar Structure with a Nanogradient Composite for Increased Oxygen Diffusivity and Reduction Activity. Advanced Energy Materials, 2014, 4, 1400783.	19.5	11
28	Surface segregation and poisoning in materials for low-temperature SOFCs. MRS Bulletin, 2014, 39, 810-815.	3.5	47
29	Oxide ionic conductivity in Pr2(Ni, Cu, Ga)O4+δ–(Ce, Sm)O2–δ laminated film estimated with the Hebb–Wagner method. Solid State Ionics, 2014, 262, 889-892.	2.7	2
30	Electrical conductivity and oxygen diffusivity in Cu- and Ga-doped Pr2NiO4. Solid State Ionics, 2014, 256, 5-10.	2.7	32
31	Development of Doubleâ€Perovskite Compounds as Cathode Materials for Lowâ€Temperature Solid Oxide Fuel Cells. Angewandte Chemie - International Edition, 2014, 53, 13064-13067.	13.8	176
32	(Invited) Increased Oxide Ion Diffusivity and Surface Exchange on Pr2NiO4 Base Oxide by Au Dispersion. ECS Transactions, 2014, 61, 123-129.	0.5	2
33	Boron Poisoning of (La, Sr)(Co, Fe)O3 Cathodes of Solid Oxide Fuel Cells. ECS Transactions, 2013, 57, 1821-1830.	0.5	1
34	XRD and Raman Spectroscopy Study of Mn Solubility in Cerium Oxide. ECS Transactions, 2013, 57, 1607-1612.	0.5	8
35	Effect of Boron Deposition and Poisoning on the Surface Exchange Properties of LSCF Electrode Materials of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F682-F686.	2.9	35
36	Electronic and oxide ion conductivity in Pr2Ni0.71Cu0.24Ga0.05O4/Ce0.8Sm0.2O2 laminated film. Solid State Ionics, 2013, 230, 16-20.	2.7	12

#	Article	IF	CITATIONS
37	Effect of Volatile Boron Species on the Microstructure and Composition of (La,Sr)MnO3and (La,Sr)(Co,Fe)O3Cathode Materials of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2013, 160, F1033-F1039.	2.9	19
38	XRD and Raman Spectroscopy Study of Fe solubility in Cerium Oxide. ECS Transactions, 2013, 50, 53-58.	0.5	12
39	New buffer layer material La(Pr)CrO3for intermediate temperature solid oxide fuel cell using LaGaO3-based electrolyte film. Journal of Materials Research, 2012, 27, 1906-1914.	2.6	6
40	Single-nanosize pulverization of solid oxide by means of a wet planetary-bead-milling. Journal of the Ceramic Society of Japan, 2012, 120, 39-42.	1.1	3
41	Improved electrical conductivity in Pr2Ni(Cu,Ga)O4 film with nano thickness. International Journal of Hydrogen Energy, 2012, 37, 8066-8072.	7.1	5
42	Effect of doped ceria interlayer on cathode performance of the electrochemical cell using proton conducting oxide. Electrochimica Acta, 2012, 75, 179-184.	5.2	6
43	Synthesis and Photocatalytic Activity of Rhodium-Doped Calcium Niobate Nanosheets for Hydrogen Production from a Water/Methanol System without Cocatalyst Loading. Journal of the American Chemical Society, 2011, 133, 18034-18037.	13.7	205
44	High Sinterability of Planetary-Bead-Milled Barium Zirconate. Electrochemistry, 2009, 77, 876-878.	1.4	9